SOLDAGEM MAG
A soldagem é um processo essencial na indústria moderna,
responsável por unir permanentemente dois ou mais materiais, geralmente
metálicos, por meio do aquecimento localizado com ou sem a aplicação de
pressão. Ela representa um dos principais métodos de fabricação, sendo
indispensável na construção de estruturas metálicas, veículos, navios,
oleodutos, equipamentos industriais, entre outros. Seu desenvolvimento
acompanha o avanço tecnológico da humanidade, desde as primeiras técnicas
rudimentares até os sofisticados métodos automatizados de soldagem atuais.
A soldagem é definida como um processo de junção de
materiais que envolve a fusão localizada de suas superfícies. De modo geral,
utiliza-se uma fonte de calor para fundir as bordas dos metais e, muitas vezes,
um material de adição (eletrodo ou arame) para preencher a junta. Após o
resfriamento, a solidificação do metal fundido forma uma união contínua entre
as partes, com resistência comparável à do próprio material original.
Existem vários processos de soldagem, sendo os mais comuns
a soldagem a arco elétrico, soldagem por resistência, soldagem por
oxiacetileno, entre outros. A escolha do processo depende de fatores como tipo
de material, espessura, posição da solda, custos operacionais e exigência de
qualidade.
A soldagem a arco elétrico é a mais utilizada na indústria devido à sua eficiência e versatilidade. Nesse método, um arco elétrico é estabelecido entre o eletrodo e a peça a ser soldada, gerando temperaturas superiores a 3.000°C, capazes de fundir a maioria dos metais. Dentro dessa categoria, destacam-se os processos MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas) e eletrodo revestido.
Os processos de soldagem podem ser classificados segundo a
fonte de energia utilizada: soldagem a arco elétrico, por resistência elétrica,
por laser, por feixe de elétrons, por fricção, entre outras. Outro critério de
classificação considera a necessidade ou não de metal de adição, a utilização
de gás de proteção e o tipo de corrente elétrica (contínua ou alternada).
A soldagem MIG/MAG, por exemplo, é um processo semi-automático ou automático, que utiliza arame contínuo como eletrodo e gás de proteção para evitar a contaminação da poça de fusão. A diferença entre MIG e MAG está no tipo de gás: o primeiro usa gás inerte, como argônio, e o
segundo
gás ativo, como dióxido de carbono ou misturas.
Já a soldagem TIG se destaca pela alta qualidade do
acabamento e pelo controle preciso do processo, sendo muito empregada em
trabalhos delicados, como na indústria aeroespacial e em componentes de aço
inoxidável.
A soldagem está presente em praticamente todos os setores
da indústria. Na construção civil, é usada na montagem de estruturas metálicas,
torres de transmissão, pontes, viadutos e edifícios. Na indústria automotiva,
permite a produção em massa de veículos com alta resistência estrutural,
aplicando-se tanto na carroceria quanto no chassi e demais componentes
metálicos.
Na indústria naval e offshore, a soldagem é fundamental
para a construção e manutenção de navios, plataformas petrolíferas e dutos
submarinos. A integridade das soldas nesse segmento é crítica, dada a exposição
às condições extremas de pressão, corrosão e impacto mecânico.
A soldagem também é amplamente utilizada na fabricação de
equipamentos industriais, tanques de armazenamento, caldeiras, tubulações, além
de ser essencial nos setores aeroespacial, ferroviário e de geração de energia.
Além disso, com o avanço da automação e da robótica, processos de soldagem
automatizados têm sido aplicados com frequência crescente, elevando a
produtividade e a precisão.
Do ponto de vista técnico, a soldagem permite a construção
de estruturas complexas com alta resistência mecânica, excelente vedação e
durabilidade. É, muitas vezes, o único processo viável para unir determinados
materiais ou para fabricar equipamentos com formatos específicos.
Do ponto de vista econômico, a soldagem influencia
diretamente os custos de produção. Processos mais eficientes reduzem o tempo de
fabricação, o consumo de material e a necessidade de retrabalho. Além disso, a
durabilidade das soldas afeta diretamente a vida útil e a segurança dos
produtos finais, o que se reflete na redução de falhas, acidentes e custos de
manutenção.
O domínio da soldagem é, portanto, um diferencial
competitivo para empresas e profissionais da área técnica. A formação de mão de
obra qualificada nesse campo é considerada estratégica para o setor industrial
de qualquer país, pois a demanda por soldadores capacitados é constante e
global.
A qualidade da solda é avaliada por critérios visuais e ensaios técnicos, como ensaios não
destrutivos (ultrassom, radiografia, líquido
penetrante), que verificam a presença de defeitos internos ou superficiais. Uma
solda com falhas pode comprometer a integridade de toda a estrutura, sendo
fundamental o controle rigoroso dos parâmetros de soldagem, dos materiais
utilizados e das condições ambientais.
A segurança do profissional soldador também é uma
preocupação central. A exposição a altas temperaturas, radiação ultravioleta,
gases tóxicos e riscos elétricos exige o uso de equipamentos de proteção
individual (EPIs), como máscara com filtro escuro, avental de raspa, luvas e
botas isolantes. Além disso, deve-se seguir as normas regulamentadoras do
Ministério do Trabalho, como a NR-6 (EPIs), NR-12 (máquinas e equipamentos) e
NR-18 (condições de segurança na construção civil).
A soldagem é uma tecnologia de base que sustenta a
construção e o desenvolvimento de diversas áreas industriais. Sua aplicação vai
muito além da simples união de metais, envolvendo conceitos de engenharia,
física dos materiais, segurança do trabalho e controle de qualidade. O
conhecimento técnico sobre os processos de soldagem é essencial para a formação
de profissionais qualificados e para o avanço produtivo de setores estratégicos
da economia.
Em um mundo cada vez mais industrializado e automatizado,
dominar os fundamentos da soldagem representa uma porta de entrada para o
mercado de trabalho técnico e uma oportunidade de crescimento profissional
contínuo.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
Miami: AWS, 2012.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• SILVA,
Ricardo R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• ABNT.
NBR 1614 – Terminologia de Soldagem.
Associação Brasileira de Normas Técnicas, 2020.
• BRASIL.
Ministério do Trabalho. Normas
Regulamentadoras (NRs)
–
NR-6, NR-12, NR-18. Disponível em: https://www.gov.br/trabalho
A soldagem é uma das tecnologias de união mais antigas e essenciais na fabricação e manutenção de estruturas metálicas. Seu papel é central em diversos setores industriais, e sua evolução ao longo do tempo acompanhou os avanços das ciências dos materiais, da eletrônica, da robótica e da automação industrial. Os diferentes tipos de processos de soldagem foram desenvolvidos para atender às exigências
específicas de resistência, qualidade,
produtividade e custo em diferentes contextos.
A soldagem por fusão é o grupo mais conhecido e utilizado,
no qual as superfícies dos materiais são fundidas por uma fonte de calor,
geralmente sem aplicação de pressão. Essa categoria engloba os seguintes
processos:
É o tipo mais difundido industrialmente, caracterizado pelo
uso de um arco elétrico entre um eletrodo e a peça de trabalho. A temperatura
do arco funde o metal base e, em muitos casos, também um material de adição.
Entre os principais processos estão:
• SMAW (Shielded Metal Arc Welding) –
conhecido como eletrodo revestido. É versátil e amplamente utilizado em
construções metálicas e manutenções.
• GMAW (Gas Metal Arc Welding) – inclui
MIG (Metal Inert Gas) e MAG (Metal Active Gas). Utiliza arame contínuo e gás de
proteção, ideal para produção em série.
• GTAW (Gas Tungsten Arc Welding) –
conhecido como TIG. Usa eletrodo de tungstênio não consumível, proporciona
soldas de alta qualidade, comum na indústria aeronáutica e petroquímica.
• FCAW (Flux-Cored Arc Welding) – utiliza
arame tubular com fluxo interno, podendo dispensar gás externo. Indicado para
soldagem em campo e em estruturas pesadas.
Neste processo, a chama resultante da combustão do
acetileno com o oxigênio aquece e funde os metais. É um método mais antigo,
ainda utilizado para soldagens leves, corte e brasagem, especialmente em
regiões onde o acesso à energia elétrica é limitado.
São tecnologias avançadas que utilizam fontes de alta
densidade de energia para realizar soldas de precisão. A soldagem a laser é
utilizada em setores como o automotivo, médico e microeletrônico. Já o feixe de
elétrons é aplicado em ambientes a vácuo, proporcionando soldas extremamente
precisas em peças de alta responsabilidade.
Ao contrário da soldagem por fusão, esses processos não
necessariamente envolvem derretimento do material. Em vez disso, a união ocorre
por meio de pressão mecânica e calor, em alguns casos por atrito.
Amplamente usada na indústria automobilística, esse método
gera calor pela resistência elétrica dos materiais à passagem da corrente. Os
principais subtipos são:
• Soldagem por Ponto (RSW) – muito empregada na junção de chapas finas, especialmente
empregada na junção de chapas finas, especialmente em carrocerias.
• Soldagem por Costura (Seam Welding) –
gera uma solda contínua, ideal para tanques e reservatórios.
• Soldagem por Projeção (Projection Welding)
– usada em peças com relevos ou saliências projetadas para facilitar a união.
Nesse processo, o calor é gerado pelo atrito entre
superfícies sob pressão. A união ocorre sem fusão, sendo útil na junção de
materiais dissimilares. Um subtipo moderno é o Friction Stir Welding (FSW), muito utilizado em ligas de alumínio
para aeronaves e vagões ferroviários.
Na soldagem por estado sólido, os materiais são unidos sem
fusão, utilizando calor ou deformação mecânica. Esses processos são adequados
para metais sensíveis a alterações microestruturais ou para combinações de
materiais difíceis de soldar por fusão.
Exemplos incluem:
• Soldagem por Explosão (Explosive Welding)
– utiliza uma carga explosiva para unir metais incompatíveis.
• Soldagem a Frio (Cold Welding) – ocorre
sob pressão sem aplicação de calor, utilizada em ambientes de vácuo ou peças
pequenas.
• Ultrasonic Welding – muito usada em
plásticos e eletrônicos, emprega vibrações ultrassônicas para gerar calor
local.
Com a evolução da indústria 4.0, a soldagem também passou
por transformações significativas. A automação e a robótica permitiram o
aumento da repetibilidade, da qualidade e da segurança do processo. Robôs de
soldagem são amplamente utilizados em fábricas automotivas, plataformas
offshore e linhas de produção complexas.
O monitoramento digital em tempo real, com sensores e
inteligência artificial, tornou possível detectar falhas no processo, ajustar
parâmetros automaticamente e registrar dados para rastreabilidade da qualidade.
Além disso, técnicas como realidade aumentada vêm sendo incorporadas ao
treinamento de soldadores, melhorando a capacitação e a segurança.
A soldagem por adição de material, também chamada de manufatura aditiva (3D welding), é um
campo emergente. Utilizando princípios semelhantes à impressão 3D, peças
inteiras são construídas camada por camada a partir de metais fundidos por
feixes de energia, como laser ou arco elétrico.
Os diversos tipos de processos de soldagem atendem a uma grande variedade de demandas industriais. Desde a simples união de chapas
metálicas até a fabricação de componentes aeroespaciais, a escolha do processo
adequado exige análise técnica cuidadosa, conhecimento dos materiais envolvidos
e das exigências de qualidade e produtividade.
A soldagem continua sendo uma área em constante
desenvolvimento, impulsionada por inovações tecnológicas e pela necessidade de
soluções mais eficientes e sustentáveis. O futuro aponta para uma integração
cada vez maior entre tecnologia da informação, automação e processos de união,
consolidando a soldagem como uma ciência indispensável para a indústria
moderna.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
9th ed. Miami: AWS, 2012.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• SILVA,
Ricardo R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• ABNT.
NBR 1614 – Terminologia de Soldagem.
Associação Brasileira de Normas Técnicas, 2020.
• PEREIRA,
A. B. et al. Soldagem: Processos e
Aplicações. Florianópolis: UFSC, 2021.
• KOU,
Sindo. Welding Metallurgy. 2nd ed.
Hoboken: Wiley-
Interscience, 2003.
A soldagem é uma das tecnologias mais relevantes para o
desenvolvimento industrial contemporâneo. Sua aplicação vai além da simples
união de peças metálicas, sendo fundamental para garantir a integridade
estrutural, a segurança operacional e a eficiência econômica em setores como
construção civil, automobilístico, naval, aeroespacial, energético,
petroquímico e de bens de consumo. Com a crescente demanda por inovação,
qualidade e produtividade, a soldagem consolidou-se como uma disciplina
indispensável nas cadeias produtivas industriais.
A soldagem permite a fabricação de componentes e estruturas
que seriam inviáveis ou economicamente impraticáveis por outros métodos. Ao
possibilitar a junção de partes metálicas de diferentes geometrias, tamanhos e
espessuras, ela viabiliza desde pequenas peças de precisão até grandes
estruturas como pontes, embarcações, torres e oleodutos.
Trata-se de um processo que pode ser automatizado,
robotizado ou realizado manualmente, adaptando-se às necessidades específicas
de cada setor. Sua versatilidade permite aplicações tanto em ambientes
controlados quanto em campo, em condições adversas de clima, acesso e
posicionamento.
A resistência das uniões soldadas é um aspecto técnico
essencial. Em muitas aplicações, a solda deve suportar esforços mecânicos,
vibrações, variações térmicas e corrosão ao longo do tempo, o que demanda
precisão no controle dos parâmetros de soldagem, seleção de materiais e
qualificação profissional.
Na construção civil, a soldagem desempenha papel crucial na
montagem de estruturas metálicas, viadutos, edifícios industriais, pontes e
galpões. O uso crescente do aço como elemento estrutural aumentou
significativamente a demanda por técnicas de união eficientes e seguras.
Além disso, grandes obras de infraestrutura dependem de
tubulações e tanques soldados para o transporte de água, gás e combustíveis. A
confiabilidade dessas soldas impacta diretamente a segurança e a durabilidade
das instalações, exigindo inspeções rigorosas, como ensaios não destrutivos
(ENDs) e monitoramento contínuo.
O avanço de técnicas como a soldagem por eletrodo
revestido, MIG/MAG e, mais recentemente, o uso de soldagem automatizada por
robôs, tornou possível acelerar a construção de obras com alta produtividade,
mantendo os níveis de segurança exigidos pelas normas técnicas.
A soldagem é parte integrante da produção industrial de
bens duráveis. No setor automobilístico, ela é empregada em larga escala na
montagem de carrocerias, chassis e componentes mecânicos. A introdução de
processos automatizados de soldagem, especialmente a resistência por ponto
(spot welding), revolucionou a capacidade de produção em massa, com alta
precisão e repetibilidade.
Na indústria de máquinas e equipamentos, a soldagem é
essencial para a fabricação de tratores, escavadeiras, guindastes, caldeiras e
estruturas metálicas pesadas. A resistência mecânica das soldas garante o
desempenho e a segurança de equipamentos submetidos a grandes esforços e
pressões.
Outro campo importante é a indústria naval, onde a soldagem
é empregada tanto na construção de navios quanto na reparação de estruturas
submarinas e plataformas. Nesse ambiente, a qualidade da solda é ainda mais
crítica, pois defeitos podem comprometer a segurança de embarcações e causar
impactos ambientais severos.
O setor energético depende intensamente da soldagem para instalação e manutenção de dutos, turbinas, torres eólicas, usinas hidrelétricas, térmicas e nucleares. Na geração de energia eólica, por
exemplo,
a soldagem de pás, torres e suportes deve ser altamente precisa e durável,
considerando as cargas cíclicas e intempéries a que essas estruturas são
submetidas.
Na indústria petrolífera, a soldagem é empregada tanto em
refinarias quanto em plataformas de exploração offshore, onde as condições de
operação exigem soluções altamente resistentes à corrosão, abrasão e pressões
extremas. O mesmo se aplica a oleodutos e gasodutos, cuja extensão e exposição
ambiental requerem soldas seguras e de longa vida útil.
Além do aspecto técnico, a soldagem tem relevante impacto
econômico. A eficiência dos processos de soldagem afeta diretamente o custo de
produção, a durabilidade dos produtos e os índices de retrabalho. Investir em
tecnologias de soldagem e na formação de profissionais qualificados permite
aumentar a competitividade das empresas e reduzir desperdícios de material,
tempo e energia.
Profissionais da área de soldagem são constantemente
demandados, seja como operadores, técnicos, engenheiros ou inspetores. O
mercado exige conhecimentos específicos sobre materiais, processos, normas
técnicas e segurança do trabalho, o que transforma a soldagem em uma carreira
sólida e com amplas possibilidades de especialização.
Com a introdução de sistemas computacionais, sensores e
inteligência artificial, a soldagem está cada vez mais inserida no contexto da
Indústria 4.0. Robôs soldadores, linhas automatizadas e monitoramento remoto
são apenas alguns exemplos de como a soldagem evoluiu para se integrar ao
sistema digital de produção industrial.
A segurança no trabalho com soldagem é uma preocupação
permanente, considerando os riscos térmicos, elétricos, químicos e ergonômicos.
O uso correto de Equipamentos de Proteção Individual (EPIs), a manutenção de
equipamentos e a conformidade com as normas regulamentadoras (como a NR-6,
NR-10 e NR-12) são medidas indispensáveis para preservar a integridade física
dos trabalhadores.
Do ponto de vista da qualidade, a rastreabilidade dos procedimentos de soldagem, a qualificação dos soldadores e a realização de ensaios técnicos são requisitos fundamentais, principalmente em setores críticos como aeroespacial, nuclear e petroquímico. As normas da American Welding Society (AWS) e da Associação Brasileira de Normas Técnicas (ABNT) são amplamente utilizadas como referência para padronização dos
processos.
A soldagem é uma atividade técnica estratégica, que
sustenta grande parte da estrutura industrial moderna. Sua importância vai além
da técnica, alcançando aspectos econômicos, sociais e ambientais. Ao permitir a
construção de infraestruturas seguras, duráveis e eficientes, a soldagem
contribui diretamente para o desenvolvimento de um país, sendo um elo essencial
entre o conhecimento técnico e a inovação produtiva.
A evolução dos processos, a ampliação das aplicações e o
avanço tecnológico indicam que a soldagem continuará a desempenhar papel
central nas indústrias do futuro. Investir na capacitação de profissionais, no
aprimoramento dos processos e na integração com sistemas digitais é, portanto,
uma prioridade para qualquer nação que pretenda manter sua competitividade
industrial.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
9th ed. Miami: AWS, 2012.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• SILVA,
Ricardo R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• ABNT.
NBR 14842 – Requisitos para Procedimentos
de Soldagem.
Associação Brasileira de Normas Técnicas, 2021.
• BRASIL.
Ministério do Trabalho. Normas
Regulamentadoras (NRs)
–
NR-6, NR-10, NR-12. Disponível em: https://www.gov.br/trabalho
A soldagem MAG (Metal Active Gas), também conhecida como
soldagem a arco com gás ativo, é um dos processos mais utilizados nas
indústrias modernas devido à sua alta produtividade, versatilidade e capacidade
de aplicação em diversos materiais e espessuras. Essa técnica pertence ao grupo
dos processos de soldagem a arco elétrico com proteção gasosa e se destaca por
combinar eficiência, facilidade de operação e bom acabamento da solda.
O processo MAG é frequentemente associado ao processo
MIG/MAG (Gas Metal Arc Welding – GMAW), uma vez que ambos utilizam arame
contínuo alimentado automaticamente e um gás de proteção. A principal diferença
entre eles está no tipo de gás utilizado: o processo MIG emprega gás inerte
(como argônio), enquanto o processo MAG utiliza gás ativo (como dióxido de
carbono ou misturas com argônio), que participa da reação de soldagem.
O processo MAG baseia-se na formação de um arco elétrico entre um eletrodo consumível (um arame metálico contínuo) e a peça a ser soldada. Esse arco
gera calor suficiente para fundir o arame e o metal base,
formando uma poça de fusão que, ao se solidificar, une as peças permanentemente.
Durante a soldagem, o arame é continuamente alimentado por
um alimentador mecânico, permitindo operação contínua e automatizada. Ao mesmo
tempo, um gás de proteção é liberado para envolver a zona de solda,
protegendo-a da contaminação atmosférica, especialmente do oxigênio e do
nitrogênio, que poderiam causar defeitos como porosidade e trincas.
O diferencial do processo MAG está no uso de gases ativos,
como o dióxido de carbono (CO₂) ou misturas de CO₂ com argônio. Esses gases não
apenas protegem a poça de fusão, mas também influenciam o comportamento do arco
e a transferência de metal, participando quimicamente do processo de soldagem.
Isso permite uma penetração mais profunda da solda e maior estabilidade do
arco, tornando o processo ideal para soldagens de açocarbono e aços de baixa
liga.
O sistema de soldagem MAG é composto por diversos elementos
que atuam de forma integrada para garantir a qualidade da solda. Os principais
componentes são:
• Fonte de energia: fornece corrente
elétrica (geralmente contínua, polaridade reversa) para manter o arco.
• Alimentador de arame: conduz o arame de
solda de maneira contínua e controlada até a tocha.
• Tocha de soldagem: conduz o arame, o
gás de proteção e a corrente elétrica até a peça de trabalho.
• Cilindro de gás de proteção: fornece o
gás ativo necessário para a proteção da poça de fusão.
• Arame de solda (eletrodo consumível):
material metálico que funde e compõe a junta soldada.
A regulagem precisa dos parâmetros operacionais, como
velocidade de alimentação do arame, tensão de soldagem e fluxo de gás, é
fundamental para o sucesso do processo.
O processo MAG oferece diversas vantagens que justificam
sua ampla aplicação industrial:
• Alta produtividade: devido à
alimentação contínua do arame, permite longas sequências de soldagem sem
interrupções.
• Boa penetração da solda: o uso de gases
ativos proporciona maior energia no arco.
• Facilidade de automação: o processo
pode ser facilmente integrado a robôs e sistemas automatizados.
• Versatilidade: permite soldagem em
diversas posições e tipos de junta.
• Baixo custo operacional: especialmente
quando se utiliza CO₂ puro como gás de proteção.
Essas
características tornam o processo ideal para a
fabricação de estruturas metálicas, componentes automotivos, equipamentos
agrícolas e tubulações industriais.
Apesar das vantagens, o processo MAG também apresenta
algumas limitações e desafios técnicos. O uso de gases ativos pode provocar
maior geração de respingos e exige controle rigoroso da poça de fusão para
evitar defeitos. Além disso, o processo é sensível à presença de contaminantes
na superfície do metal, como óleo, ferrugem ou umidade.
Outro aspecto crítico é a escolha correta do arame e do gás
de proteção, que deve ser compatível com o tipo de material e a espessura da
peça. O controle adequado da distância da tocha, do ângulo de trabalho e da
velocidade de soldagem também é essencial para garantir a qualidade e
uniformidade do cordão de solda.
A qualificação dos soldadores e a manutenção preventiva dos
equipamentos são fatores indispensáveis para a segurança e eficácia do
processo.
O processo MAG é amplamente utilizado na indústria de
transformação, em especial na soldagem de:
• Estruturas metálicas pesadas: como
pontes, galpões e torres de transmissão.
• Componentes automotivos: carrocerias,
chassis e peças estruturais.
• Equipamentos agrícolas e industriais:
tratores, implementos e caldeiras.
• Tubulações e tanques: em setores como
petróleo, gás e saneamento.
A versatilidade e adaptabilidade do processo MAG permitem
sua aplicação tanto em grandes produções automatizadas quanto em pequenas
oficinas com operações manuais.
Com o avanço das tecnologias de automação e controle
digital, o processo MAG vem sendo cada vez mais utilizado em linhas de produção
robotizadas, que garantem repetibilidade, eficiência e redução de custos.
A soldagem MAG representa um dos pilares da fabricação
metálica moderna. Seu funcionamento baseado em arco elétrico com arame contínuo
e gás ativo oferece uma combinação de eficiência, penetração e adaptabilidade.
A simplicidade do processo, aliada à possibilidade de automação e à ampla gama
de aplicações, justifica sua predominância em diversos setores industriais.
No entanto, para que o processo MAG atinja todo seu potencial, é necessário conhecimento técnico, controle rigoroso de parâmetros e atenção às boas práticas de segurança e qualidade. Quando bem executado, o processo MAG oferece soldas robustas, econômicas e com excelente
desempenho
mecânico, posicionando-se como uma das soluções mais eficazes em soldagem por
arco elétrico.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
Miami: AWS, 2012.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• SILVA,
Ricardo R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• PEREIRA,
A. B. et al. Soldagem: Processos e
Aplicações Industriais.
Florianópolis: UFSC, 2021.
• ABNT.
NBR 1614 – Terminologia de Soldagem.
Associação Brasileira de Normas Técnicas, 2020.
A soldagem a arco elétrico com arame contínuo e proteção
gasosa é amplamente empregada na indústria moderna devido à sua eficiência,
versatilidade e capacidade de automação. Dentro dessa categoria, destacamse os
processos MIG (Metal Inert Gas) e MAG (Metal Active Gas), muitas vezes
agrupados sob a sigla GMAW (Gas Metal Arc Welding). Apesar de semelhantes em
técnica e operação, MIG e MAG apresentam diferenças fundamentais,
principalmente quanto ao tipo de gás de proteção utilizado e às aplicações
recomendadas. Compreender essas diferenças é essencial para a escolha adequada
do processo de soldagem conforme os requisitos do material, da qualidade e do
ambiente de trabalho.
Tanto a soldagem MIG quanto a MAG pertencem à família dos
processos de soldagem a arco com proteção gasosa e eletrodo consumível. Em
ambos, a união das peças metálicas é realizada por meio de um arco elétrico
estabelecido entre um arame metálico (eletrodo) e a peça a ser soldada. Esse
arame é alimentado de forma contínua por um sistema automático, enquanto um gás
é liberado na tocha para proteger a poça de fusão da contaminação atmosférica
(oxigênio, nitrogênio, umidade).
A proteção gasosa é vital para evitar a formação de
porosidade, inclusões e outros defeitos na solda. A principal distinção entre
os processos MIG e MAG está no tipo de gás utilizado e na interação desse gás
com o arco e o metal fundido.
A soldagem MIG utiliza um gás inerte como proteção da poça de fusão. Gases inertes são aqueles
que não reagem quimicamente com o metal fundido, como o argônio e o hélio. Essa
característica permite maior controle do arco e um acabamento mais limpo da
solda, sem interferência química.
Esse processo é especialmente indicado para a soldagem de metais não
ferrosos, como alumínio, cobre, níquel e suas
ligas. O uso de gás inerte evita reações indesejadas e proporciona uma soldagem
mais estável, com menor quantidade de respingos e bom aspecto visual do cordão.
Devido ao alto custo dos gases inertes e à necessidade de
controle mais rigoroso dos parâmetros, a soldagem MIG é mais comum em setores
que exigem alta qualidade e acabamento fino, como a indústria aeronáutica,
alimentícia e de equipamentos eletrônicos.
A soldagem MAG, por outro lado, utiliza gás ativo ou misturas contendo gás
ativo como proteção. O gás ativo mais utilizado é o dióxido de carbono (CO₂), puro ou misturado com argônio. Ao
contrário dos gases inertes, os gases ativos reagem com o metal fundido,
influenciando diretamente as características do arco e da solda.
Essa reatividade proporciona maior penetração da solda e aumento da energia do arco, tornando o processo mais robusto e eficiente para
a soldagem de aços ao carbono e de baixa
liga. Além disso, o custo do CO₂ é significativamente menor que o dos gases
inertes, o que contribui para a popularização do processo MAG em ambientes
industriais de média e grande escala.
O processo MAG é mais tolerante a variações do ambiente,
sendo ideal para aplicações estruturais, construção civil, indústria naval e
fabricação de peças automotivas.
A seguir, destacam-se as principais diferenças técnicas e
operacionais entre os dois processos:
• Gás de proteção:
o
MIG:
gases inertes (argônio, hélio). o MAG: gases ativos ou mistos (CO₂, argônio + CO₂, argônio +
oxigênio).
• Reação com o metal fundido:
o
MIG:
não há reação química.
o
MAG:
há reação, influenciando a metalurgia da solda.
• Aplicação por tipo de material:
o
MIG:
metais não ferrosos (alumínio, cobre, etc.).
o
MAG:
aços ao carbono e aços de baixa liga.
• Acabamento da solda:
o
MIG: melhor
acabamento, menor respingo.
o
MAG:
acabamento mais rugoso, maior incidência de respingos.
• Penetração da solda:
o
MIG:
menor, ideal para materiais finos. o MAG: maior, ideal para estruturas robustas.
• Custo do processo:
o
MIG:
mais elevado, devido ao gás inerte.
o
MAG:
mais econômico, uso de CO₂ puro ou misturas.
A escolha entre MIG e MAG deve considerar os seguintes
fatores:
• Tipo de material a ser soldado: MIG
MIG é
mais apropriado para materiais não ferrosos, enquanto MAG é preferido para
aços.
• Espessura das peças: MAG proporciona
maior penetração, sendo preferível para materiais espessos.
• Ambiente de trabalho: MAG é mais
robusto em ambientes externos e industriais pesados.
• Acabamento necessário: MIG gera cordões
mais limpos, ideal para soldas visíveis.
• Orçamento: MAG é mais acessível
economicamente.
Além disso, a qualificação do operador e a disponibilidade
de gases também influenciam na decisão. Em muitos casos, é possível usar
misturas gasosas balanceadas para obter resultados intermediários entre os dois
extremos.
Apesar das semelhanças operacionais, a soldagem MIG e MAG
apresentam distinções relevantes, especialmente quanto ao gás de proteção e às
aplicações específicas. A soldagem MIG, com gás inerte, é ideal para materiais
não ferrosos e soldas de alta qualidade visual, enquanto a soldagem MAG, com
gás ativo, é mais eficiente para estruturas de aço, oferecendo alta penetração
e custo reduzido.
Ambos os processos continuam em constante aprimoramento,
acompanhando a evolução tecnológica das indústrias. Com o avanço da automação,
da robótica e dos sistemas digitais de monitoramento, tanto o
MIG quanto o MAG vêm sendo cada vez mais utilizados em
ambientes industriais que exigem produtividade, precisão e qualidade.
A correta compreensão das diferenças entre os dois
processos é essencial para engenheiros, técnicos e operadores que buscam
otimizar a produção e garantir a integridade das juntas soldadas, respeitando
os critérios técnicos, econômicos e de segurança de cada aplicação.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
9th ed. Miami: AWS, 2012.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• SILVA,
Ricardo R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• ABNT.
NBR 1614 – Terminologia de Soldagem.
Associação Brasileira de Normas Técnicas, 2020.
• PEREIRA,
A. B. et al. Soldagem: Processos e
Aplicações Industriais. Florianópolis: UFSC, 2021.
A soldagem MAG (Metal Active Gas) é um dos processos mais versáteis e utilizados na indústria moderna. Como uma variação do processo GMAW (Gas Metal Arc Welding), ela se caracteriza pela utilização de um gás ativo — geralmente dióxido de carbono (CO₂) ou misturas com argônio
soldagem MAG (Metal Active Gas) é um dos processos mais
versáteis e utilizados na indústria moderna. Como uma variação do processo GMAW
(Gas Metal Arc Welding), ela se caracteriza pela utilização de um gás ativo —
geralmente dióxido de carbono (CO₂) ou misturas com argônio — como proteção da
poça de fusão durante a soldagem. Essa característica confere ao processo MAG
maior penetração e reatividade, tornando-o especialmente adequado para a união
de aços ao carbono e de baixa liga. A combinação de produtividade,
adaptabilidade e viabilidade econômica faz com que o processo MAG seja
amplamente empregado em setores industriais que exigem resistência mecânica,
soldagem em diversas posições e operação contínua.
A indústria automobilística é uma das maiores beneficiárias
do processo MAG. Utilizado principalmente na fabricação de carrocerias, chassis
e componentes estruturais, o processo MAG permite alta taxa de deposição,
operação automatizada e soldas de boa resistência. Sua capacidade de aplicação
em chapas finas, aliada à facilidade de automação, faz dele o processo
preferido para linhas robotizadas de produção.
Em montadoras, a soldagem MAG é aplicada em:
• Estruturas
de carroceria (body-in-white),
• Fixação
de painéis,
• Montagem
de subconjuntos estruturais,
• Reforços
internos e suportes metálicos.
A utilização de robôs de soldagem programados com precisão
milimétrica permite manter a repetibilidade e a qualidade dos cordões, mesmo em
volumes elevados de produção. Além disso, a soldagem MAG atende às exigências
de custo e produtividade impostas pelo setor automotivo.
No setor da construção civil, o uso de estruturas metálicas
é crescente, especialmente em obras de grande porte, como galpões industriais,
pontes, viadutos, torres de transmissão e edifícios comerciais. O processo MAG
é amplamente empregado na união de vigas, colunas, chapas e perfis metálicos
utilizados nessas estruturas.
Devido à sua robustez, a soldagem MAG é adequada para
trabalhos com aços estruturais, que demandam soldas profundas e resistentes. A
versatilidade do processo também permite sua aplicação em campo, com uso de
equipamentos móveis e geradores portáteis.
As principais vantagens do uso do processo MAG nesse
contexto são:
• Redução
de tempo de montagem,
• Facilidade
de aplicação em diferentes posições de soldagem,
•
Compatibilidade
com os aços mais utilizados na construção civil,
• Custo
reduzido quando comparado a outros métodos com gases inertes.
A soldagem MAG é amplamente aplicada na construção e
manutenção de navios, plataformas marítimas, embarcações de transporte e
estruturas offshore. Neste setor, a resistência das juntas e a produtividade do
processo são essenciais para garantir integridade estrutural e minimizar custos
de operação.
Entre as principais aplicações estão:
• Construção
de cascos de navios,
• Montagem
de tanques internos e divisórias estruturais, • Reparos em estruturas metálicas de plataformas de petróleo,
• Soldagem
de tubulações e suportes metálicos.
Como o processo MAG permite soldagens longas e contínuas
com boa penetração e resistência, ele é ideal para unir chapas espessas e
grandes componentes estruturais. O uso de misturas gasosas com proporções
específicas de CO₂ e argônio também permite ajustar o processo às condições
exigidas pelos ambientes marítimos, reduzindo defeitos como porosidade e
trincas.
Outro setor em que o processo MAG se destaca é na
fabricação de equipamentos industriais e agrícolas. Tratores, colheitadeiras,
escavadeiras, guindastes, máquinas-ferramentas e outros equipamentos de grande
porte são produzidos com aços de alta resistência e espessuras variadas, o que
exige um processo de soldagem confiável e robusto.
A soldagem MAG é amplamente empregada na montagem de:
• Estruturas
de suporte,
• Chassis
e bases metálicas,
• Braços
articulados e implementos,
• Carcaças
de motores e caixas de transmissão.
Além da resistência, a possibilidade de automatizar parte
do processo em oficinas e fábricas contribui para a padronização dos cordões de
solda e para a melhoria da eficiência produtiva.
A produção de tanques de armazenamento, reservatórios
pressurizados, caldeiras e tubulações metálicas também se beneficia do processo
MAG. Nessas aplicações, a exigência por estanqueidade, resistência à pressão e
integridade estrutural é elevada. A soldagem MAG, com sua penetração eficiente
e controle da transferência metálica, garante a formação de cordões de solda
adequados, mesmo em espessuras elevadas.
As principais aplicações incluem:
• Tanques
de combustíveis,
• Reservatórios de água e gás, •
Tambores industriais e silos,
• Redes
de distribuição de gás e petróleo.
A facilidade de controle dos parâmetros operacionais, como
velocidade de alimentação do arame e tensão do arco, permite ajustar a solda às
condições de trabalho e ao tipo de junta. Além disso, o uso de misturas gasosas
melhora a estabilidade do arco e reduz defeitos típicos, como respingos e
poros.
O processo MAG também é largamente utilizado em serviços de
manutenção, recuperação e reforço de peças metálicas. Sua aplicação é comum em
oficinas industriais, serviços de campo, usinas, ferrovias e instalações
energéticas. O uso do processo permite:
• Reparos
em estruturas metálicas danificadas,
• Reforço
de componentes críticos,
• Recuperação
de superfícies desgastadas,
• Substituição
de peças soldadas em tempo reduzido.
Como o processo MAG aceita soldagens em diferentes posições
e com rápida preparação do equipamento, ele é ideal para intervenções pontuais,
sem a necessidade de desmontagem completa da estrutura.
O processo de soldagem MAG consolidou-se como uma
ferramenta fundamental para diversos setores industriais. Sua aplicabilidade em
diferentes materiais, principalmente nos aços, aliada à possibilidade de
automação, alta taxa de deposição e custo relativamente baixo, faz dele uma
escolha estratégica para linhas de produção, montagem de estruturas e
manutenção.
A correta aplicação do processo MAG, entretanto, exige
conhecimento técnico, controle rigoroso de parâmetros e seleção adequada dos
consumíveis e gases de proteção. Quando esses fatores são respeitados, o
processo MAG oferece soldas de alta resistência, durabilidade e produtividade,
contribuindo para o avanço tecnológico e a competitividade das empresas no
cenário global.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
9th ed. Miami: AWS, 2012.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• SILVA,
Ricardo R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• PEREIRA,
A. B. et al. Soldagem: Processos e
Aplicações Industriais. Florianópolis: UFSC, 2021.
• ABNT.
NBR 1614 – Terminologia de Soldagem.
Associação Brasileira de Normas Técnicas, 2020.
A soldagem MAG (Metal Active Gas) é amplamente utilizada na
indústria para a união de metais ferrosos, sendo especialmente eficaz na
soldagem de aços-carbono e aços inoxidáveis. Esses dois grupos
metálicos representam a maior parte das aplicações do processo, cada um com
suas características, comportamentos metalúrgicos e exigências técnicas
específicas. A escolha dos parâmetros de soldagem, dos consumíveis e dos gases
de proteção deve levar em consideração as propriedades físicas e químicas
desses materiais para garantir uma solda de qualidade, resistente e durável.
O aço-carbono é
o tipo de aço mais comum na indústria. Ele é composto basicamente de ferro e
carbono, podendo conter pequenas quantidades de outros elementos residuais.
Dependendo do teor de carbono, pode ser classificado em aço baixo carbono (até
0,30%), médio carbono (0,30% a 0,60%) e alto carbono (acima de 0,60%).
Na soldagem MAG, o aço de baixo carbono é o mais amplamente utilizado, devido à sua boa
soldabilidade, custo reduzido e vasta aplicação industrial. Sua estrutura
microestrutural permite uma fusão adequada com menor risco de trincas ou
fragilização.
• Boa soldabilidade: o baixo teor de
carbono evita a formação de fases frágeis durante o resfriamento.
• Custo acessível: tanto o material base
quanto os consumíveis têm preços baixos.
• Alta disponibilidade: amplamente
produzido e comercializado.
• Ampla aplicabilidade: usado na
construção civil, indústria automotiva, ferroviária, naval e de máquinas.
Apesar da boa soldabilidade do aço-carbono, é necessário
observar fatores como:
• Preparação adequada da junta (remoção
de óxidos, tintas e óleo),
• Controle da velocidade de resfriamento,
que pode influenciar a formação de estruturas martensíticas em aços de médio
carbono,
• Seleção correta do arame e gás de proteção:
o CO₂ puro é comum, mas misturas com argônio (como 80/20 ou 75/25) oferecem
melhor estabilidade do arco e menos respingos.
Em geral, o arame ER70S-6 é um dos mais utilizados para
soldagem de açocarbono por MAG, graças à sua boa fluidez e resistência
mecânica.
O aço inoxidável é uma liga composta predominantemente por ferro, com pelo menos 10,5% de cromo, o que lhe confere resistência à corrosão. Pode conter ainda níquel, molibdênio, titânio e
outros elementos que modificam
suas propriedades.
Os principais tipos de aços inoxidáveis utilizados na
indústria são os austeníticos (como
o AISI 304 e AISI 316), os ferríticos
e os martensíticos. Entre esses, os
austeníticos são os mais comuns para aplicações industriais e apresentam melhor
soldabilidade.
• Indústria alimentícia: tanques,
tubulações e utensílios.
• Indústria química e farmacêutica: reatores,
reservatórios e sistemas de transporte de fluidos corrosivos.
• Construção civil e arquitetura:
corrimãos, fachadas e estruturas decorativas.
• Setor médico-hospitalar: equipamentos e
instrumentos cirúrgicos.
A soldagem de aços inoxidáveis apresenta maior complexidade técnica em
comparação ao aço-carbono, exigindo cuidados específicos:
• Risco de contaminação por ferrita e
oxidação, que pode comprometer a resistência à corrosão,
• Formação de zonas afetadas pelo calor (ZAC)
sensíveis à corrosão intergranular, especialmente em aços estabilizados,
• Escolha do gás de proteção apropriado,
com misturas especiais (geralmente argônio com pequenas frações de oxigênio ou
CO₂),
• Uso de arames específicos, como o
ER308L para inox AISI 304 ou o ER316L para AISI 316.
A corrente elétrica e a tensão devem ser ajustadas com
precisão para evitar a formação de respingos, porosidade e excesso de calor,
que podem comprometer a integridade do cordão e a aparência da solda.
Ao comparar aço-carbono e aço inoxidável na soldagem MAG, é
possível observar diferenças marcantes em aspectos técnicos, econômicos e
operacionais. O aço-carbono possui menor custo de aquisição, maior
disponibilidade e excelente soldabilidade, especialmente nas versões de baixo
carbono. Já o aço inoxidável apresenta um custo mais elevado, porém oferece
alta resistência à corrosão e maior durabilidade em ambientes agressivos.
Do ponto de vista da soldabilidade, o aço-carbono, quando devidamente limpo e preparado, é menos exigente quanto ao tipo de gás de proteção e arame utilizado. Em contraste, o aço inoxidável exige gases de proteção mais específicos, como misturas de argônio com pequenas proporções de CO₂ ou O₂, para evitar reações indesejadas com o cromo e preservar suas propriedades anticorrosivas. Além disso, os arames consumíveis também são distintos: o ER70S-6 é o
ponto de vista da soldabilidade, o aço-carbono, quando
devidamente limpo e preparado, é menos exigente quanto ao tipo de gás de
proteção e arame utilizado. Em contraste, o aço inoxidável exige gases de
proteção mais específicos, como misturas de argônio com pequenas proporções de
CO₂ ou O₂, para evitar reações indesejadas com o cromo e preservar suas
propriedades anticorrosivas. Além disso, os arames consumíveis também são
distintos: o ER70S-6 é o mais comum para aço-carbono, enquanto o aço inoxidável
requer arames como ER308L ou ER316L, que são mais caros e específicos.
No que se refere à aplicação industrial, o aço-carbono é
mais utilizado em estruturas metálicas, peças automotivas, construção civil e
equipamentos pesados. O aço inoxidável, por sua vez, é preferido nos setores
alimentício, farmacêutico, hospitalar e químico, onde a resistência à corrosão
e o aspecto higiênico são essenciais. Além disso, o acabamento superficial da
solda é mais crítico no aço inoxidável, o que requer maior controle dos
parâmetros de soldagem e habilidade do operador.
Portanto, embora ambos os materiais possam ser soldados
eficientemente pelo processo MAG, a seleção correta de insumos e técnicas deve
considerar essas diferenças fundamentais para garantir o desempenho e a
integridade das estruturas soldadas.
Tanto para o aço-carbono quanto para o aço inoxidável,
alguns cuidados gerais são fundamentais para garantir a qualidade da solda:
• Limpeza prévia das superfícies: óleos,
graxas e ferrugem devem ser completamente removidos.
• Ajuste preciso dos parâmetros:
voltagem, corrente e velocidade do arame devem ser compatíveis com o tipo de
material.
• Controle da atmosfera de trabalho:
correntes de ar podem afetar a eficiência do gás de proteção.
• Uso de EPIs adequados: a proteção
contra radiação, calor e gases é essencial à segurança do soldador.
O aço-carbono e o aço inoxidável são os metais mais comuns
na aplicação do processo MAG. Cada um apresenta vantagens e desafios que
requerem conhecimento técnico para sua correta soldagem. O aço-carbono,
amplamente disponível e de fácil soldabilidade, é usado em larga escala em
estruturas e equipamentos pesados. Já o aço inoxidável, com sua elevada
resistência à corrosão, é empregado em setores que exigem higiene, resistência
química e durabilidade.
A soldagem MAG, quando corretamente aplicada, permite unir esses materiais
com alta eficiência e qualidade. Contudo, a correta escolha dos
consumíveis, dos parâmetros operacionais e dos cuidados específicos com cada
metal são determinantes para o sucesso do processo.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
9th ed. Miami: AWS, 2012.
• SILVA,
Ricardo R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• ABNT.
NBR 1614 – Terminologia de Soldagem.
Associação Brasileira de Normas Técnicas, 2020.
• PEREIRA,
A. B. et al. Soldagem: Processos e
Aplicações Industriais. Florianópolis: UFSC, 2021.
A soldagem MAG (Metal Active Gas), uma das variações do
processo GMAW (Gas Metal Arc Welding), destaca-se pela utilização de gases ativos como meio de proteção da
poça de fusão. Ao contrário dos gases inertes, os gases ativos interagem
quimicamente com o metal fundido, afetando diretamente o comportamento do arco
elétrico, a transferência de material, a penetração e a aparência da solda. Os
principais representantes desse grupo são o dióxido de carbono (CO₂) puro e as misturas gasosas com argônio. A escolha adequada do gás de proteção
é um fator essencial para o sucesso do processo de soldagem, impactando tanto a
qualidade técnica da junta quanto a produtividade e o custo do trabalho.
O gás de proteção desempenha um papel fundamental na
soldagem a arco com eletrodo consumível. Sua função principal é proteger a poça de fusão da contaminação
atmosférica, prevenindo a entrada de oxigênio, nitrogênio e umidade, que
poderiam gerar defeitos como porosidade, trincas, inclusão de escória ou
alteração na microestrutura da solda. Além disso, o gás influencia diversos
aspectos operacionais, como:
• Estabilidade do arco elétrico: gases
adequados contribuem para um arco mais estável e controlável.
• Transferência de metal: o tipo de gás
interfere na forma como o metal fundido passa do arame para a peça (por gotas,
curto-circuito ou spray).
• Penetração e perfil do cordão de solda:
gases ativos promovem maior energia no arco e penetração mais profunda.
• Formação de respingos e escória:
misturas bem balanceadas reduzem respingos e melhoram o acabamento.
• Velocidade de soldagem e produtividade: dependendo do gás, é possível
do gás, é possível aumentar a taxa de deposição.
Portanto, a escolha do gás de proteção não é uma decisão
meramente econômica, mas sim técnica, influenciada por variáveis como o tipo de
metal a ser soldado, espessura, posição de soldagem e qualidade desejada da
junta.
O CO₂ é o gás ativo
mais tradicional e amplamente utilizado no processo MAG, principalmente na
soldagem de aços ao carbono. Trata-se de um gás economicamente viável,
facilmente disponível, não inflamável e com razoável capacidade de proteção do
arco e da poça de fusão.
• Custo baixo e ampla disponibilidade,
ideal para aplicações industriais de grande escala.
• Alta penetração, o que permite soldagem
de materiais mais espessos.
• Boa resistência mecânica da solda,
devido à maior densidade de energia no arco.
Apesar de suas vantagens, o CO₂ puro apresenta algumas
limitações técnicas:
• Maior geração de respingos, que exige
retrabalho para acabamento.
• Arco menos estável comparado a misturas
com argônio.
• Transferência metálica predominantemente
por curto-circuito, o que pode limitar a aplicação em posições não planas
ou em soldas finas.
Por essas razões, o CO₂ é frequentemente usado em
aplicações onde o custo é fator determinante e o acabamento estético da solda
não é a principal exigência, como na soldagem de estruturas metálicas pesadas,
contêineres e equipamentos agrícolas.
A adição de argônio ao CO₂ resulta em misturas mais
estáveis e tecnicamente superiores para aplicações que exigem maior controle e
qualidade. As misturas mais comuns no processo MAG são:
• 75% Argônio / 25% CO₂
• 80% Argônio / 20% CO₂
• Estabilidade superior do arco elétrico,
permitindo melhor controle da poça de fusão.
• Redução significativa de respingos, o
que melhora o acabamento da solda.
• Transferência de metal por spray em vez
de curto-circuito, ideal para altas velocidades e maior taxa de deposição.
• Menor risco de porosidade e trincas,
com melhor controle do perfil do cordão.
Essas misturas são amplamente utilizadas em aplicações
automotivas, indústria de bens de consumo, estruturas metálicas leves e
componentes que exigem soldas limpas e de boa aparência.
Embora as misturas com argônio ofereçam melhores resultados
técnicos, seu custo é mais elevado em comparação ao CO₂ puro. A decisão sobre o
uso dessas misturas deve considerar a relação custo-benefício, o tipo de junta,
os requisitos de acabamento e os índices de retrabalho aceitáveis na linha de
produção.
Além disso, a proporção exata da mistura deve ser ajustada
conforme o material a ser soldado. Em aços inoxidáveis, por exemplo, é comum a
adição de pequenas quantidades de
oxigênio ou hélio ao argônio para melhorar a fluidez da poça e a fusão.
A escolha entre o uso de CO₂ puro ou misturas com argônio
depende de uma série de fatores técnicos e econômicos. O CO₂ é indicado para
aplicações robustas, com menor exigência estética, sendo comum em soldas de
estruturas pesadas. Já as misturas proporcionam cordões mais uniformes, menos
respingos e melhor acabamento superficial, ideais para soldas visíveis ou de
precisão.
Além do tipo de gás, deve-se considerar:
• Espessura do material: misturas são
preferíveis para chapas finas.
• Posição de soldagem: misturas favorecem
soldagem fora da posição plana.
• Tipo de transferência metálica desejada:
o CO₂ favorece curtocircuito, enquanto misturas com argônio permitem spray.
• Custo operacional: o CO₂ é mais barato,
mas pode gerar mais retrabalho.
Dessa forma, a seleção do gás ativo deve estar alinhada com
o projeto, o orçamento e a qualificação dos soldadores envolvidos no processo.
Os gases ativos utilizados na soldagem MAG, como o CO₂ puro
e suas misturas com argônio, exercem papel essencial na qualidade e no
desempenho do processo. O CO₂, tradicional e acessível, é indicado para soldas
que priorizam a penetração e o custo, enquanto as misturas argônioCO₂ oferecem
melhor controle, estabilidade e acabamento.
A correta escolha do gás de proteção não apenas assegura a
integridade da junta soldada, mas também contribui para a produtividade e
redução de retrabalho na linha de fabricação. Em um ambiente industrial cada
vez mais exigente, compreender as funções e os impactos dos gases ativos é
indispensável para a otimização dos processos de soldagem.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
9th ed. Miami: AWS, 2012.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• SILVA, Ricardo R.
R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• PEREIRA,
A. B. et al. Soldagem: Processos e
Aplicações Industriais. Florianópolis: UFSC, 2021.
• ABNT.
NBR 1614 – Terminologia de Soldagem.
Associação Brasileira de Normas Técnicas, 2020.
Na soldagem MAG (Metal Active Gas), o arame consumível
exerce um papel central no processo, atuando simultaneamente como eletrodo e
material de adição. Sua função é fundir-se sob a ação do arco elétrico,
preenchendo a junta entre os metais e formando o cordão de solda. A escolha
correta do tipo de arame é fundamental para garantir a integridade mecânica da
solda, sua resistência à corrosão, sua adequação ao material base e a
estabilidade do processo. Existem diferentes tipos de arames consumíveis disponíveis
no mercado, cada um com características próprias e aplicações específicas.
O arame utilizado na soldagem MAG deve ter compatibilidade metalúrgica com o metal base, boa condutividade elétrica, estabilidade de alimentação e capacidade de formar um cordão de solda homogêneo e isento de defeitos. Ao entrar em contato com o arco elétrico, o arame funde-se e transfere-se para a poça de fusão, promovendo a união entre as peças. Além disso, o arame influencia a taxa de deposição, a forma do cordão, a penetração e a incidência de respingos.
Outros fatores determinantes incluem o diâmetro do arame, que afeta a corrente necessária e a taxa de
deposição, e o revestimento do arame,
que pode conter desoxidantes e estabilizantes que melhoram a fluidez do metal
fundido e evitam inclusões de óxidos.
O arame sólido é o tipo mais comum na soldagem MAG.
Trata-se de um fio metálico contínuo, sem núcleo, geralmente fabricado em
aço-carbono ou aço inoxidável, com revestimento de cobre para melhorar a
condutividade elétrica e reduzir o desgaste da ponte de contato na tocha.
Principais características:
• Menor
geração de escória;
• Transferência
de metal mais limpa;
• Requer
gás de proteção eficiente (geralmente misturas com argônio e CO₂);
• Adequado
para chapas finas, posições planas e soldas de acabamento.
Aplicações típicas:
• Indústria
automobilística;
• Estruturas
metálicas leves; • Equipamentos eletrônicos;
• Peças
com exigência estética no cordão de solda.
O arame ER70S-6
,
por exemplo, é amplamente utilizado para soldagem de aços-carbono, por
apresentar excelente capacidade de fusão, penetração e resistência mecânica,
mesmo em superfícies ligeiramente oxidadas.
Embora tecnicamente relacionado a outro processo (FCAW –
Flux Cored Arc Welding), os arames tubulares também podem ser utilizados com
gás de proteção, e em muitos casos são aplicados com equipamentos de soldagem
semelhantes aos de soldagem MAG. Esses arames possuem um núcleo contendo pós
fundentes, desoxidantes, estabilizantes e elementos de liga.
Principais características:
• Maior
taxa de deposição;
• Boa
estabilidade do arco em altas correntes;
• Melhor
desempenho em soldagens fora da posição plana;
• Adequado
para aplicações estruturais e em campo.
Aplicações típicas:
• Construção
naval e offshore;
• Indústria
pesada;
• Reparos
estruturais e manutenção;
• Soldagem
de aços espessos ou de alta resistência.
O uso de arame tubular permite maior produtividade em
ambientes industriais exigentes, sendo uma escolha estratégica para reduzir
tempo de soldagem e retrabalho.
A soldagem de aços inoxidáveis requer arames consumíveis
específicos, com composição química cuidadosamente balanceada para preservar a
resistência à corrosão e a integridade da microestrutura. Os arames mais comuns
para inox são os do tipo ER308L, ER316L e ER309L.
Características e aplicações:
• ER308L: utilizado para soldagem de inox
AISI 304;
• ER316L: recomendado para inox AISI 316,
com maior resistência à corrosão por cloretos;
• ER309L: usado para união de aços
inoxidáveis com aços-carbono (soldagem dissimilar).
Esses arames são aplicados em setores como indústria
alimentícia, farmacêutica, hospitalar e química, onde os requisitos de higiene,
resistência à corrosão e acabamento são críticos.
A seleção do arame consumível deve levar em conta diversos
fatores técnicos e operacionais, tais como:
• Tipo de material base: o arame deve ter
composição química compatível com o metal a ser soldado.
• Espessura do material: arames mais
finos são indicados para chapas leves, enquanto os mais espessos são
preferíveis em materiais grossos.
• Posição de soldagem: arames tubulares
são mais versáteis em posições fora da horizontal.
• Condições ambientais:
ambientes
externos ou sujos podem exigir arames com maior tolerância à contaminação.
• Requisitos de qualidade e acabamento:
aplicações que demandam estética e precisão requerem arames sólidos com bom
controle do arco.
Além disso, a correta armazenagem dos arames é essencial
para evitar oxidação, absorção de umidade e contaminação, que podem comprometer
a qualidade da solda.
O desempenho do arame consumível está diretamente
relacionado ao tipo de gás utilizado no processo. Arames sólidos, por exemplo,
são comumente utilizados com misturas de argônio e CO₂, proporcionando bom
controle do arco e baixo nível de respingos. Já arames tubulares podem ser
aplicados tanto com gases ativos quanto, em certos casos, sem gás externo,
quando contêm fluxo auto-protegido.
No caso de soldagem de aços inoxidáveis, o uso de misturas
especiais de argônio com pequenas porcentagens de oxigênio ou CO₂ é essencial
para garantir boa fusão, estabilidade e aparência da solda.
Os arames consumíveis são elementos fundamentais na
soldagem MAG, influenciando diretamente a qualidade, a eficiência e o custo do
processo. Seja em sua forma sólida ou tubular, a escolha do arame deve
considerar as propriedades do material base, as condições de trabalho e os
requisitos da aplicação final.
A correta seleção do arame, aliada ao uso adequado do gás
de proteção e à calibração dos parâmetros de soldagem, permite a execução de
juntas metálicas com alta resistência, acabamento adequado e durabilidade. Com
o avanço tecnológico, novas composições de arames e melhorias em seu desempenho
vêm sendo desenvolvidas para atender às demandas crescentes da indústria
moderna.
• AMERICAN
WELDING SOCIETY. Welding Handbook.
9th ed. Miami: AWS, 2012.
• MOURA,
Djalma A. de. Processos de Soldagem:
Fundamentos e Aplicações. São Paulo: Érica, 2018.
• SILVA,
Ricardo R. da. Tecnologia da Soldagem.
Rio de Janeiro: LTC, 2017.
• ABNT.
NBR 1614 – Terminologia de Soldagem.
Associação Brasileira de Normas Técnicas, 2020.
• PEREIRA, A. B. et al. Soldagem: Processos e Aplicações Industriais. Florianópolis: UFSC, 2021.
Acesse materiais, apostilas e vídeos em mais de 3000 cursos, tudo isso gratuitamente!
Matricule-se AgoraAcesse materiais, apostilas e vídeos em mais de 3000 cursos, tudo isso gratuitamente!
Matricule-se Agora