TRANSPORTE AEROMÉDICO

Aspectos Operacionais e Assistenciais

Avaliação e Preparação do Paciente

Critérios de Inclusão/Exclusão e Checklist de Estabilização

1. Introdução

O transporte aeromédico é um recurso estratégico destinado à remoção rápida e segura de pacientes que requerem atendimento especializado durante o deslocamento. No entanto, sua utilização deve obedecer a critérios clínicos e operacionais rigorosos, a fim de evitar riscos desnecessários ao paciente e à equipe envolvida. A avaliação criteriosa do quadro clínico e a adequada preparação do paciente antes do embarque são etapas essenciais para o sucesso da missão.

Nesse contexto, os critérios de inclusão e exclusão para o transporte aeromédico, bem como a realização de um checklist de estabilização prévoo, são fundamentais para garantir a segurança, a eficácia e a racionalização do uso dos recursos disponíveis.

2. Critérios de Inclusão para Transporte Aeromédico

O uso de aeronaves no transporte de pacientes deve ser reservado a situações em que o tempo, a distância ou as condições geográficas representem barreiras ao atendimento rápido e eficaz. Os principais critérios de inclusão incluem:

- Urgência clínica associada à necessidade de transporte rápido, como infartos agudos do miocárdio, acidentes vasculares cerebrais (AVC), politraumatismos e insuficiências respiratórias graves.
- Pacientes em estado crítico que necessitam de remoção para centros de referência, com infraestrutura especializada em alta complexidade (UTI, neurocirurgia, hemodinâmica, neonatal etc.).
- Pacientes estáveis, mas com necessidade de deslocamento por longas distâncias, especialmente em áreas remotas ou de difícil acesso.
- Cenários de desastres naturais ou acidentes com múltiplas vítimas, onde há necessidade de evacuação rápida e segura.

.com.br

• Limitação de acesso terrestre: regiões sem estrutura viária adequada, ilhas, florestas, áreas rurais distantes.

A decisão deve sempre considerar o custo-benefício da operação, avaliando se o transporte aéreo realmente oferecerá ganho clínico ao paciente.

3. Critérios de Exclusão

Da mesma forma que há situações que indicam o transporte aeromédico, há também **condições clínicas ou logísticas que contraindicam** o uso dessa modalidade. Os critérios de exclusão mais comuns são:

- Instabilidade clínica extrema e não controlável, como parada cardiorrespiratória em curso ou choque refratário sem possibilidade de estabilização mínima.
- Necessidade de procedimentos de emergência imediatos que não podem ser realizados a bordo, como cirurgia torácica aberta ou drenagem cirúrgica de abdômen.
- Presença de risco para a segurança do voo, como pacientes com comportamento agressivo, transtornos psiquiátricos descompensados sem contenção ou casos de contaminação biológica sem isolamento adequado.
- Condições meteorológicas ou técnicas que impeçam o voo seguro,
 mesmo com a indicação clínica estabelecida.
- Ausência de vaga ou aceite na unidade de destino, o que pode inviabilizar o transporte e prolongar desnecessariamente o tempo de exposição do paciente a riscos durante o deslocamento.

Cada situação deve ser avaliada de forma individualizada por equipe médica treinada, com participação da regulação médica e consulta ao hospital de destino.

4. Checklist de Estabilização do Paciente

Antes do embarque do paciente em uma aeronave, é imprescindível que seja realizada uma **estabilização clínica completa**, conforme protocolos de atendimento pré-hospitalar e transporte inter-hospitalar. Essa estabilização visa garantir que o paciente esteja em condições mínimas para suportar as condições do voo, que incluem variações de pressão, vibração, limitação de espaço e tempo de resposta limitado a emergências.

A seguir, apresenta-se um checklist básico de estabilização recomendado por diretrizes nacionais e internacionais:

1. Avaliação das vias aéreas:

- Garantir via aérea pérvia.
- Intubação orotraqueal, se necessário.
- Fixação adequada do tubo e verificação bilateral de entrada de ar.

2. Respiração:

- Oxigenoterapia adequada.
- Monitoramento de saturação.
- Ventilação mecânica ajustada às condições do voo, com alarmes ativos.

3. Circulação:

- Dois acessos venosos calibrosos ou acesso central.
- Controle de sangramentos.
- Pressão arterial estabilizada.
- Infusão de cristaloides ou drogas vasoativas conforme protocolo.

4. Estado neurológico:

- Avaliação da Escala de Coma de Glasgow.
- Monitoramento de resposta pupilar.
- Sedação e analgesia se indicadas.

5. Controle da temperatura:

 Manutenção da normotermia com cobertores térmicos ou sistemas de aquecimento.

6. Estabilização ortopédica:

- Imobilização de fraturas com talas, cintos e colar cervical.
- Fixação adequada do paciente à maca.

7. Equipamentos e medicações:

- Monitores funcionando e com baterias extras.
- Bomba de infusão calibrada.
- Estojo de emergência com materiais e medicamentos disponíveis.

8. Documentação e aceite:

- Declaração médica de estabilidade.
- Confirmação da vaga e da equipe de recepção no destino.
- Ficha de transporte com informações completas sobre o quadro clínico, exames, medicações em uso e intercorrências recentes.

Esse checklist deve ser conduzido por toda a equipe (médico, enfermeiro, técnico), com revisão final antes do embarque. A falha em algum dos itens pode representar risco elevado à missão.

5. Considerações Finais

O transporte aeromédico oferece vantagens significativas em termos de tempo de resposta e acesso a cuidados especializados. No entanto, para que essa modalidade seja segura e eficaz, é imprescindível realizar uma **triagem criteriosa dos casos**, respeitando os critérios de inclusão/exclusão, e assegurar a **estabilização adequada do paciente antes do voo**.

O sucesso da missão depende da tomada de decisão clínica embasada, da comunicação entre os serviços de origem e destino, da capacitação técnica da equipe aeromédica e da aplicação de protocolos rigorosos de segurança e qualidade assistencial.

A padronização de processos, o uso de checklists e o treinamento contínuo das equipes são estratégias indispensáveis para minimizar riscos e ampliar os benefícios desta importante ferramenta da medicina de emergência moderna.

Referências Bibliográficas

- MARCHETTI, Gabriel. *Cuidados Intensivos no Transporte Aeromédico*. Rio de Janeiro: MedBook, 2020.
- FREITAS, Flávio. *Manual de Transporte Aeromédico*. São Paulo: Atheneu, 2021.
- AMIB Associação de Medicina Intensiva Brasileira. Diretrizes para Transporte de Pacientes Críticos. São Paulo: AMIB, 2018.
- BRASIL. Ministério da Saúde. *Portaria GM/MS nº 2048/2002*. Brasília, 2002.
- NAEMT National Association of Emergency Medical Technicians.
 Prehospital Trauma Life Support (PHTLS). Burlington: Jones & Bartlett, 2021.
- ANAC Agência Nacional de Aviação Civil. RBAC 135. Disponível
 em: https://www.anac.gov.br

Cuidados com Equipamentos e Monitoramento Contínuo no Transporte Aeromédico

1. Introdução

O ambiente do transporte aeromédico impõe condições operacionais e fisiológicas que exigem cuidados rigorosos com os equipamentos médicos utilizados e com o monitoramento contínuo do paciente. Dado o caráter crítico de muitos transportes – especialmente em UTI aérea e emergências – é essencial garantir que todos os dispositivos estejam em perfeito funcionamento e que os sinais vitais do paciente sejam acompanhados com precisão e regularidade ao longo de toda a missão.

A adequada preparação, verificação e utilização dos equipamentos médicos a bordo – como monitores multiparamétricos, ventiladores mecânicos e bombas de infusão – são indispensáveis para a manutenção da vida e a prevenção de complicações durante o voo. Além disso, o monitoramento contínuo permite respostas rápidas a mudanças no estado clínico do paciente, possibilitando intervenções imediatas mesmo em ambientes desafiadores, como a cabine de uma aeronave.

2. Equipamentos Médicos no Ambiente Aéreo

As aeronaves destinadas ao transporte aeromédico devem ser equipadas com dispositivos médicos adaptados às condições físicas do voo, como pressão atmosférica reduzida, vibração, ruído e movimento constante. Tais condições podem interferir tanto no funcionamento dos equipamentos quanto na estabilidade do paciente, tornando necessária a utilização de dispositivos específicos e devidamente testados para uso aéreo.

Os principais equipamentos utilizados incluem:

- Monitores multiparamétricos: para aferição contínua de frequência cardíaca, pressão arterial, saturação de oxigênio (SpO₂), frequência respiratória e temperatura.
- Ventiladores mecânicos de transporte: com configuração específica para uso em altitudes variadas e ambientes com oscilação de pressão.
- Bombas de infusão contínua: para administração precisa de medicamentos vasoativos, sedativos, analgésicos e fluidos.
- Desfibriladores com monitor cardíaco: para situações de parada cardiorrespiratória ou arritmias graves.
- Aspiração portátil, oxigenoterapia, oxímetros de pulso e materiais de intubação.

Todos os dispositivos devem estar fixados adequadamente à estrutura da aeronave para evitar deslocamentos durante o voo. Devem, ainda, possuir autonomia de energia suficiente para todo o trajeto e possíveis imprevistos, com baterias extras disponíveis.

3. Verificação Prévia e Manutenção

Antes de cada missão, é imprescindível que toda a equipe aeromédica realize uma **verificação pré-voo dos equipamentos**. Essa verificação segue um checklist técnico que contempla:

- Integridade física dos dispositivos (sem cabos danificados, conectores frouxos ou sinais de mau funcionamento).
- Níveis de carga das baterias.

- Presença de acessórios, como sensores, mangueiras, cânulas e circuitos de ventilação.
- Funcionamento de alarmes sonoros e visuais.
- Configuração correta de parâmetros, como volume corrente, frequência respiratória e limites de pressão.

A manutenção preventiva dos equipamentos deve seguir protocolos definidos pelo fabricante e pela equipe técnica de engenharia clínica do operador aeromédico. Recomenda-se a realização de inspeções periódicas, calibração regular e armazenamento adequado dos dispositivos entre as missões.

A falha de um equipamento durante o voo pode comprometer gravemente o atendimento ao paciente, sendo considerada uma ocorrência crítica do ponto de vista da segurança operacional.

.com.br

4. Monitoramento Contínuo do Paciente

O monitoramento contínuo é essencial para detectar precocemente qualquer alteração nos parâmetros fisiológicos do paciente, possibilitando a tomada imediata de decisões clínicas. No contexto aeromédico, isso se torna ainda mais relevante devido à instabilidade que o transporte pode causar, tanto por fatores físicos (vibração, altitude, aceleração) quanto emocionais (estresse, dor, ansiedade).

Os parâmetros mais frequentemente monitorados são:

- Frequência cardíaca e ritmo: para detecção de arritmias, bradicardia ou taquicardia.
- Pressão arterial não invasiva (ou invasiva, quando disponível): controle da perfusão e resposta a medicamentos.

- Saturação periférica de oxigênio (SpO₂): para avaliação da oxigenação e necessidade de ajuste da ventilação.
- Frequência respiratória: tanto espontânea quanto sob ventilação assistida.
- **Temperatura corporal:** controle térmico em pacientes neonatais ou com sepse.
- Capnografia (quando disponível): especialmente em pacientes entubados, para controle da ventilação efetiva.

Além da monitorização tecnológica, é importante manter a observação clínica frequente do paciente, com avaliação de nível de consciência, coloração da pele, reatividade pupilar e presença de sinais de sofrimento respiratório ou dor.

IDEA

5. Condutas em Caso de Falha de Equipamentos

Mesmo com verificações rigorosas, falhas técnicas podem ocorrer durante o voo. Para esses casos, é fundamental que a equipe esteja preparada para executar condutas de contingência, como:

- Uso de equipamentos de backup (como ventilador de transporte manual bolsa-válvula-máscara).
- Administração manual de medicações previamente calculadas.
- Comunicação imediata com a central de regulação para redirecionamento da missão, se necessário.
- Registros detalhados da falha e acionamento da manutenção técnica ao final da missão.

A redundância operacional (disponibilidade de alternativas manuais) é um princípio básico da aviação e deve ser igualmente aplicado à medicina aeromédica.

6. Considerações Finais

O transporte aeromédico é uma extensão da unidade de terapia intensiva em pleno voo, e sua eficiência depende da combinação entre recursos humanos qualificados e equipamentos funcionais. O cuidado com os dispositivos médicos deve ir além do uso técnico: envolve planejamento, manutenção preventiva, verificação minuciosa e adaptação às exigências do ambiente aéreo.

Do mesmo modo, o monitoramento contínuo do paciente é uma prática indispensável para assegurar a detecção precoce de instabilidades e a adoção de medidas terapêuticas oportunas. A segurança e o sucesso do transporte dependem diretamente da atenção constante a esses dois pilares.

Referências Bibliográficas

- FREITAS, Flávio. *Manual de Transporte Aeromédico*. São Paulo: Atheneu, 2021.
- MARCHETTI, Gabriel. *Cuidados Intensivos no Transporte Aeromédico*. Rio de Janeiro: MedBook, 2020.
- BRASIL. Ministério da Saúde. *Manual de Atendimento Pré-Hospitalar em Situações de Urgência*. Brasília: MS, 2019.
- AMIB Associação de Medicina Intensiva Brasileira. Diretrizes para Transporte de Pacientes Críticos. São Paulo: AMIB, 2018.
- NAEMT. Critical Care Transport. Jones & Bartlett Learning, 2021.
- ANAC Agência Nacional de Aviação Civil. *RBAC 135 Operações Aeromédicas*. Disponível em: https://www.anac.gov.br

.com.br

Logística e Segurança da Operação no Transporte Aeromédico

Planejamento de Rota, Segurança da Cena e Gerenciamento de Risco

1. Introdução

O transporte aeromédico é uma atividade complexa que envolve variáveis clínicas, operacionais e logísticas. A segurança da operação depende diretamente de um planejamento detalhado que abrange desde a definição da rota até o gerenciamento de riscos no solo e em voo. Por isso, o sucesso de uma missão aeromédica não se limita à assistência ao paciente, mas inclui também a análise de condições meteorológicas, segurança da equipe e protocolos claros de atuação em emergências.

Neste contexto, a integração entre os profissionais da saúde e da aviação é fundamental. Ambos os segmentos precisam compreender os riscos envolvidos e aplicar medidas preventivas e corretivas para garantir a segurança da missão, da tripulação e do paciente.

2. Planejamento de Rota e Tempo de Voo

O planejamento da rota é uma etapa crítica no transporte aeromédico. O tempo de voo, as condições meteorológicas, a autonomia da aeronave e a disponibilidade de locais seguros para pouso e decolagem devem ser cuidadosamente avaliados. A responsabilidade pelo planejamento cabe à tripulação de voo, em coordenação com a equipe médica e com as centrais de regulação.

Os principais aspectos considerados no planejamento incluem:

- Distância total e tempo estimado de voo, levando em conta velocidade da aeronave, ventos e escalas técnicas.
- Condições meteorológicas no local de origem, rota e destino, com base em informações de serviços meteorológicos aeronáuticos (METAR, TAF).
- Aeroportos ou helipontos disponíveis, com análise da infraestrutura, altitude, obstáculos e permissões.
- Consumo de combustível e plano alternativo de pouso, em caso de emergência ou mudança de rota.
- Horários de operação e comunicação com o controle de tráfego aéreo (ATC).

A avaliação da gravidade clínica do paciente também influencia no tempo limite da missão. Em muitos casos, voos mais longos devem ser evitados se o paciente apresentar instabilidade hemodinâmica ou necessidade de intervenções frequentes.

3. Segurança da Cena e da Cabine

A segurança da cena refere-se ao local onde ocorrerá o embarque ou desembarque do paciente. Envolve a análise dos riscos físicos e operacionais que podem comprometer a missão ou colocar em perigo a integridade da equipe e do paciente.

Na segurança da cena, são consideradas:

• Condições do terreno: presença de obstáculos, fiação elétrica, inclinação, poeira ou presença de líquidos inflamáveis.

- **Isolamento da área:** controle de acesso de curiosos, veículos e fontes de ruído ou fumaça.
- Comunicação entre os serviços de apoio em solo, como bombeiros e SAMU, para sinalização e controle da área de pouso.
- Tempo de permanência da aeronave no solo, que deve ser o mais breve possível.

Na segurança da cabine, as medidas incluem:

- Fixação adequada de equipamentos e paciente, utilizando cintos e suportes específicos para evitar deslocamentos durante manobras ou turbulências.
- Organização da cabine, com acesso rápido aos equipamentos de emergência e visibilidade dos monitores.
- Uso obrigatório de cintos de segurança por todos os ocupantes durante o voo.
- Proteção auditiva, visual e respiratória da tripulação, conforme o tipo de missão.

É essencial que toda a equipe esteja treinada para identificar perigos e adote condutas padronizadas ao redor da aeronave, como evitar áreas próximas ao rotor (em helicópteros) e nunca se aproximar com objetos soltos ou metálicos.

4. Protocolos de Evacuação e Gerenciamento de Risco

O gerenciamento de risco é uma abordagem sistemática que visa antecipar, identificar e responder a ameaças operacionais e clínicas durante o transporte aeromédico. Ele envolve tanto os riscos inerentes à aviação quanto os relacionados à assistência em saúde.

Entre os principais riscos operacionais estão:

- Condições meteorológicas adversas.
- Falhas mecânicas na aeronave ou nos equipamentos médicos.
- Intercorrências clínicas graves durante o voo.
- Incidentes em solo, como colisões, quedas ou incêndios.

Para minimizar esses riscos, as organizações devem adotar um **Sistema de Gestão da Segurança Operacional (SGSO)**, como recomendado pela ANAC, com protocolos de análise de risco, registro de incidentes e auditorias internas regulares.

Os protocolos de evacuação fazem parte essencial do plano de contingência e devem ser conhecidos por toda a tripulação. Esses protocolos determinam:

- Condições para evacuação imediata da aeronave.
- Pontos de saída e procedimentos para retirada rápida do paciente.
- Local seguro para concentração da equipe após o desembarque.
- Uso de equipamentos de proteção individual (EPIs) e suporte básico à vida, se necessário.

Simulações periódicas (treinamentos de emergência) são obrigatórias para reforçar os protocolos de segurança e avaliar a prontidão da equipe para agir sob pressão.

5. Considerações Finais

A logística e a segurança da operação no transporte aeromédico envolvem muito mais do que a capacidade de voar com um paciente a bordo. Trata-se de um processo complexo que requer preparo técnico, avaliação contínua dos riscos, tomada de decisões rápidas e coordenação entre múltiplos setores.

Desde a escolha da rota até a organização da cabine e o cumprimento de protocolos de evacuação, cada etapa deve ser conduzida com foco na **segurança**, **eficiência e preservação da vida**. A atuação profissional da tripulação, aliada ao planejamento detalhado e à aplicação de diretrizes operacionais, é o que permite que o transporte aeromédico cumpra seu papel com excelência.

Referências Bibliográficas

- FREITAS, Flávio. *Manual de Transporte Aeromédico*. São Paulo: Atheneu, 2021.
- MARCHETTI, Gabriel. *Cuidados Intensivos no Transporte Aeromédico*. Rio de Janeiro: MedBook, 2020.
- BRASIL. Agência Nacional de Aviação Civil (ANAC). Regulamento Brasileiro da Aviação Civil – RBAC 135. Disponível em: https://www.anac.gov.br
- BRASIL. Ministério da Saúde. Manual de Atendimento Pré-Hospitalar em Situações de Urgência. Brasília: Ministério da Saúde, 2019.
- AMIB Associação de Medicina Intensiva Brasileira. Diretrizes para Transporte de Pacientes Críticos. São Paulo: AMIB, 2018.
- ICAO International Civil Aviation Organization. Safety Management Manual. 4th Edition, 2018.

Ética, Humanização e Situações Críticas no Transporte Aeromédico

Dilemas Éticos, Comunicação e Suporte à Equipe

1. Introdução

O transporte aeromédico é uma modalidade de assistência à saúde que exige alta complexidade técnica, precisão logística e decisões rápidas em cenários de vulnerabilidade. Além dos desafios clínicos e operacionais, o contexto do voo médico é permeado por dilemas éticos, exigência de comunicação clara e sensível com familiares e serviços de saúde, além do cuidado com a saúde emocional da própria equipe.

Em voos com pacientes graves ou em risco de morte, os profissionais enfrentam não apenas a pressão de manter a vida, mas também de tomar decisões com impacto moral e emocional significativo. Nesse cenário, valores como ética, humanização e empatia são pilares tão importantes quanto o conhecimento técnico e o cumprimento de protocolos.

2. Dilemas Éticos no Transporte de Pacientes Graves

Os dilemas éticos no transporte aeromédico surgem especialmente quando há conflitos entre a autonomia do paciente, os limites técnicos da operação, as diretrizes clínicas e a justiça na utilização dos recursos. Tais dilemas exigem decisões baseadas em princípios bioéticos: **autonomia**, **beneficência**, **não maleficência e justiça**.

Entre os principais dilemas estão:

- Decisão de transportar ou não pacientes em situação terminal ou com prognóstico reservado, mesmo diante da solicitação de familiares.
- Limitações técnicas e de segurança que impedem a realização do transporte, ainda que a necessidade clínica seja evidente.
- Recusa de tratamento ou transporte por parte do paciente consciente, exigindo o respeito à sua autonomia, desde que plenamente capaz de decidir.
- Escolha entre múltiplos pacientes em cenário de triagem em massa, como em desastres ou acidentes com múltiplas vítimas, o que exige critérios objetivos e padronizados.
- Administração de recursos escassos, como o uso de aeronaves para pacientes em situação não urgente, comprometendo o atendimento de casos prioritários.

A atuação ética da equipe aeromédica exige capacitação, empatia, cumprimento das normativas institucionais e, sempre que possível, apoio de centrais de regulação e comitês de ética clínica. A documentação adequada das decisões tomadas também é essencial para garantir transparência e respaldo legal.

.com.br

3. Comunicação com Familiares e Equipe em Terra

A comunicação durante o transporte aeromédico deve ser clara, objetiva, empática e contínua. Trata-se de um componente central para garantir a integração entre os diversos envolvidos na missão: familiares, hospitais de origem e destino, centrais de regulação e profissionais de apoio em solo.

Na relação com os familiares, é importante:

- Oferecer informações compreensíveis, evitando termos excessivamente técnicos.
- Esclarecer os **riscos e limitações do transporte**, sem gerar falsas expectativas.
- Tratar com respeito, paciência e empatia, reconhecendo o momento de fragilidade emocional.
- Garantir que os responsáveis estejam informados sobre a equipe que acompanhará o paciente, tempo estimado de deslocamento e condições gerais do atendimento.
- Registrar formalmente o consentimento informado, sempre que possível.

Com a equipe em terra, a comunicação deve ser:

- Baseada em protocolos objetivos, com relatórios clínicos, dados vitais e procedimentos realizados.
- Realizada por meios seguros e eficientes (rádio, telefone satelital, aplicativos próprios).
- Realizada antes, durante e após o voo, garantindo continuidade do cuidado e prontidão da equipe recebedora.
- Registrada de forma clara e arquivada para fins legais e administrativos.

A falha na comunicação pode comprometer o atendimento, gerar atrasos e, em situações extremas, colocar vidas em risco.

4. Gerenciamento do Estresse e Suporte Emocional à Equipe

O ambiente do transporte aeromédico é caracterizado por alta pressão, imprevisibilidade, exposição a situações traumáticas e responsabilidade constante. Por isso, o gerenciamento do estresse e o cuidado com a saúde mental da equipe são aspectos fundamentais da gestão do serviço.

Fatores que contribuem para o estresse na equipe aeromédica:

- Atendimento a pacientes em estado crítico, com risco de morte iminente.
- Conflitos com familiares ou decisões difíceis sobre a prioridade de atendimento.
- Longas jornadas, exposição a calor, ruído, vibração e confinamento.
- Impacto emocional cumulativo após múltiplas ocorrências traumáticas.
- Falhas técnicas ou eventos adversos com desfechos negativos.

Estratégias de suporte à equipe incluem:

- Capacitação em inteligência emocional e comunicação assertiva.
- Realização de briefings e debriefings antes e após os voos, permitindo revisar condutas, acolher emoções e aprender com a experiência.
- Disponibilização de apoio psicológico e acompanhamento multiprofissional.
- Implantação de protocolos de segurança psicológica e cultura de cuidado entre pares.
- Rotinas de descanso e escalas adequadas para evitar exaustão física e mental.

O profissional aeromédico precisa de suporte institucional e de um ambiente de trabalho que valorize sua integridade física, mental e emocional. Cuidar da equipe é também cuidar dos pacientes.

5. Considerações Finais

A atuação ética e humanizada é tão essencial quanto a excelência técnica no transporte aeromédico. Em meio às urgências, é preciso garantir respeito à dignidade humana, comunicação clara com familiares e profissionais de saúde, e apoio emocional aos que dedicam suas vidas ao cuidado em situações extremas.

A prática aeromédica exige equilíbrio entre razão e sensibilidade, entre conduta científica e escuta compassiva. Os dilemas não podem ser ignorados; precisam ser enfrentados com discernimento, empatia e apoio institucional.

Promover uma cultura ética e humanizada nas operações aeromédicas é um investimento na qualidade, na segurança e na dignidade da assistência.

Referências Bibliográficas

- FREITAS, Flávio. *Manual de Transporte Aeromédico*. São Paulo: Atheneu, 2021.
- MARCHETTI, Gabriel. *Cuidados Intensivos no Transporte Aeromédico*. Rio de Janeiro: MedBook, 2020.
- BRASIL. Ministério da Saúde. Manual de Ética na Saúde Pública.
 Brasília: MS, 2019.
- BEAUCHAMP, T. L.; CHILDRESS, J. F. Princípios de Ética Biomédica. São Paulo: Loyola, 2021.
- LEE, K. C. Crew Resource Management: Principles and Practice.
 Boca Raton: CRC Press, 2020.
- AMIB Associação de Medicina Intensiva Brasileira. *Diretrizes para Transporte de Pacientes Críticos*. São Paulo: AMIB, 2018.

.com.br