
SISTEMA DE LIGHT STEEL

Planejamento da obra e fundações compatíveis com LSF

O Light Steel Frame (LSF) é um sistema construtivo industrializado que se caracteriza pela leveza estrutural, montagem a seco e alto nível de precisão. Apesar dessas particularidades, sua eficiência e durabilidade dependem de um planejamento de obra rigoroso e da escolha correta das fundações, adaptadas às cargas reduzidas que o sistema impõe ao solo. O sucesso de uma construção em LSF está diretamente ligado à fase de preparação, que deve ser conduzida com atenção a aspectos técnicos, logísticos e normativos.

Planejamento da obra

O planejamento de uma obra em LSF difere de forma significativa da construção convencional, pois envolve **sequências mais rápidas de execução** e uma alta dependência de processos industrializados e logísticos. As principais práticas nessa fase incluem:

1. Levantamento e estudo preliminar

Antes do início do projeto executivo, é necessário realizar o levantamento topográfico e geotécnico do terreno, bem como o estudo de viabilidade técnica e econômica. Esses dados influenciam diretamente o dimensionamento das fundações e a definição das etapas construtivas.

2. Projeto integrado

O LSF exige compatibilização antecipada entre projetos arquitetônico, estrutural, elétrico, hidráulico e de climatização. Alterações em obra devem ser minimizadas, pois interferem na montagem industrializada e podem gerar custos adicionais e atrasos.

3. Gestão de suprimentos e logística

Como o LSF depende de perfis metálicos e outros componentes produzidos sob medida, é essencial um cronograma de entrega sincronizado com o avanço da obra. O armazenamento deve ocorrer em local seco e protegido, evitando danos à galvanização dos perfis ou à integridade das placas.

4. Treinamento da mão de obra

Equipes treinadas em montagem, fixação e vedação são indispensáveis para garantir a qualidade final. Erros nessa etapa podem comprometer o desempenho estrutural, térmico e acústico da edificação.

5. Organização do canteiro

O canteiro de obras no LSF deve ser planejado para otimizar a movimentação de materiais e ferramentas. Espaços de corte, pré-montagem e estocagem precisam estar próximos aos pontos de uso, reduzindo deslocamentos e aumentando a produtividade.

Fundações compatíveis com o LSF

Uma das grandes vantagens do LSF é a **redução significativa de peso** da estrutura em comparação à alvenaria convencional. Essa característica amplia as opções de fundações e, muitas vezes, reduz custos e prazos nessa etapa. No entanto, a escolha do tipo de fundação deve considerar as condições do solo, o nível de carga, as normas técnicas e a durabilidade pretendida.

1. Fundações superficiais

Em terrenos com boa capacidade de suporte, as fundações superficiais, como sapatas isoladas, vigas baldrame ou radier, são amplamente utilizadas no LSF. O radier, por exemplo, proporciona uma base contínua, facilitando a montagem da estrutura e distribuindo uniformemente as cargas.

2. Fundações profundas

Em casos de solos com baixa resistência ou necessidade de vencer grandes desníveis, podem ser utilizadas estacas cravadas, escavadas ou hélice contínua. No LSF, as cargas reduzidas permitem o uso de estacas de menor diâmetro ou profundidade em comparação às estruturas de concreto armado.

3. Pilares ou blocos de apoio

Para obras modulares ou em terrenos acidentados, o LSF pode ser apoiado em blocos de concreto ou pilares isolados, elevando a construção do solo e protegendo-a contra umidade, enchentes ou irregularidades no terreno.

Aspectos técnicos na escolha das fundações

Mesmo com a leveza do sistema, a fundação deve atender a requisitos básicos de estabilidade, durabilidade e compatibilidade com o projeto estrutural. Alguns cuidados essenciais incluem:

- **Nivelamento e prumo**: A estrutura metálica requer base perfeitamente nivelada e aprumada, pois desvios podem comprometer o encaixe dos perfis e a estanqueidade das paredes.
- **Proteção contra umidade**: O contato direto dos perfis com o solo deve ser evitado. Normalmente, utiliza-se uma camada de proteção, como mantas impermeabilizantes ou calços isolantes, entre o aço e a fundação.
- Integração com sistemas de ancoragem: As fundações devem prever pontos de fixação para a estrutura metálica, garantindo estabilidade contra cargas horizontais, como ação do vento.
- **Durabilidade e manutenção**: Materiais e técnicas utilizadas nas fundações devem resistir às condições ambientais locais e exigir baixa manutenção ao longo da vida útil da edificação.

Integração entre planejamento e fundações

O sucesso da obra em LSF depende da integração entre o planejamento e a execução das fundações. A fase de fundações deve estar sincronizada com o cronograma geral, evitando atrasos na montagem da estrutura. Por ser um sistema rápido, qualquer interrupção nesse início pode impactar todo o fluxo da obra.

Além disso, a etapa de fundações influencia diretamente o desempenho térmico e de vedação da edificação. Bases mal executadas ou desalinhadas podem gerar frestas e dificultar o encaixe correto dos painéis, comprometendo a eficiência energética e o isolamento acústico.

Considerações finais

O planejamento da obra e a definição de fundações compatíveis com o LSF são etapas estratégicas para o desempenho e a viabilidade do projeto. A precisão na execução, a conformidade com as normas técnicas e a integração

entre todos os envolvidos são elementos-chave para aproveitar ao máximo as vantagens do sistema.

Ao associar uma fundação bem dimensionada a um planejamento logístico eficiente, o LSF demonstra todo seu potencial de reduzir prazos, otimizar recursos e entregar construções de alta qualidade e durabilidade.

- ABNT Associação Brasileira de Normas Técnicas. NBR 6122:
 Projeto e execução de fundações. Rio de Janeiro, 2019.
- ABNT Associação Brasileira de Normas Técnicas. NBR 15253: Perfis estruturais de aço formados a frio – Requisitos gerais. Rio de Janeiro, 2005.
- FREITAS, Marcos A. et al. Construções Racionalizadas com Light Steel Frame. São Paulo: Pini, 2014.
- SILVA, Ricardo R. da; ALMEIDA, Leonardo S. de. *Light Steel Frame: Guia Técnico e Prático*. São Paulo: Oficina de Textos, 2015.
- PINTO, José de Arimatéia. *Tecnologia da Construção de Edificios*. São Paulo: Editora Érica, 2020.

Montagem da estrutura: prumos, alinhamento e fixações

A montagem da estrutura no sistema **Light Steel Frame (LSF)** é uma etapa crucial que demanda precisão, organização e mão de obra qualificada. Como o LSF é um sistema construtivo industrializado e leve, pequenas imprecisões durante a montagem podem comprometer não apenas o desempenho estrutural, mas também o conforto térmico, acústico e a durabilidade da edificação.

Os três aspectos fundamentais nessa fase — **prumos, alinhamento e fixações** — estão diretamente interligados e devem ser controlados com rigor para garantir a qualidade final da obra.

Portal

Prumos: verticalidade da estrutura

O termo "prumo" refere-se à verticalidade dos elementos estruturais, como montantes e colunas. No LSF, manter o prumo é essencial para:

- **Distribuição correta de cargas**: Perfis fora de prumo transferem esforços indevidos para outras partes da estrutura, podendo causar deformações ou sobrecargas localizadas.
- Facilidade na montagem de fechamentos: Placas de OSB, cimentícias ou drywall necessitam de superfícies perfeitamente alinhadas para encaixe correto e vedação adequada.
- Acabamento final: Irregularidades no prumo afetam diretamente o resultado estético, podendo gerar desalinhamentos visíveis em paredes, portas e janelas.

O controle do prumo deve ser feito desde a instalação das guias inferiores até a fixação dos últimos montantes. Utilizam-se ferramentas como níveis a laser, prumos de corda ou níveis de bolha, garantindo que cada elemento esteja corretamente posicionado antes de avançar para a etapa seguinte.

Alinhamento: precisão horizontal e dimensional

O alinhamento, seja na horizontal (planicidade) ou na vertical (faceamento), assegura que todos os componentes da estrutura estejam dispostos de forma uniforme, permitindo que o conjunto trabalhe como um sistema integrado.

No LSF, o alinhamento é fundamental por diversos motivos:

- Compatibilidade entre módulos: Em obras maiores ou modulares, cada painel ou seção estrutural precisa encaixar-se perfeitamente à outra.
- Estanqueidade: Desalinhamentos podem gerar frestas que comprometem o isolamento térmico e acústico, além de permitir infiltrações.
- **Segurança estrutural**: Um bom alinhamento garante que as cargas sejam transferidas uniformemente para as fundações, evitando pontos de fragilidade.

O processo de alinhamento deve considerar tanto a posição das guias quanto a fixação dos montantes e travessas. É importante verificar constantemente o paralelismo e a planicidade, corrigindo eventuais desvios antes de prosseguir com a montagem dos fechamentos.

Fixações: estabilidade e durabilidade

As fixações no LSF têm a função de unir os diferentes componentes estruturais, garantindo resistência, estabilidade e segurança. Para isso, devem ser utilizadas peças e técnicas específicas para o sistema, considerando:

- **Tipo de fixador**: Parafusos autoatarraxantes são os mais comuns, dimensionados conforme a espessura dos perfis e o tipo de material a ser fixado. Em alguns casos, podem ser usadas chapas metálicas de reforço, grampos ou conectores especiais.
- **Proteção contra corrosão**: Fixadores devem ser galvanizados ou revestidos com materiais anticorrosivos para preservar sua integridade ao longo da vida útil da construção.
- Posicionamento e quantidade: A distância entre fixadores, assim como sua posição, deve seguir rigorosamente as especificações do

projeto estrutural e as recomendações do fabricante, garantindo a distribuição equilibrada de esforços.

• Torque adequado: A aplicação de força excessiva ao apertar um fixador pode deformar o perfil metálico ou comprometer o revestimento anticorrosivo; força insuficiente pode gerar folgas e ruídos.

Além disso, a fixação de componentes deve considerar a interação com as camadas complementares, como isolamentos e barreiras de vapor ou de umidade, evitando danos ou perfurações que comprometam seu desempenho.

Boas práticas na montagem

Para que a montagem da estrutura do LSF seja eficiente, algumas práticas são recomendadas:

- 1. Sequência de montagem definida: Começar pela instalação das guias inferiores, passando para as guias superiores e, em seguida, os montantes, sempre mantendo conferência de prumo e alinhamento a cada etapa.
- 2. **Inspeção contínua**: Verificar a cada fase se as medidas e posicionamentos estão de acordo com o projeto executivo, evitando retrabalhos.
- 3. **Proteção dos materiais**: Perfis e fixadores devem permanecer protegidos da umidade e poeira até o momento de sua instalação, evitando danos ao revestimento protetivo.
- 4. **Integração com outros serviços**: Coordenação com as equipes responsáveis por instalações elétricas e hidráulicas é essencial, pois o LSF permite a passagem embutida de tubulações e fiações.
- 5. Capacitação da equipe: Operadores e montadores devem conhecer as especificidades do sistema, as ferramentas adequadas e os cuidados com cada etapa, garantindo produtividade e qualidade.

Considerações finais

A montagem da estrutura no sistema Light Steel Frame exige precisão e controle rigoroso de **prumos**, alinhamento e fixações. Esses elementos,

embora aparentemente simples, são determinantes para o desempenho estrutural, estético e funcional da edificação.

Ao seguir procedimentos padronizados, utilizar materiais e fixadores de qualidade e manter inspeções constantes durante a execução, é possível garantir uma montagem eficiente, segura e durável. O investimento em capacitação e no cumprimento das especificações técnicas é, portanto, fundamental para assegurar o sucesso do projeto e a satisfação do cliente.

- ABNT Associação Brasileira de Normas Técnicas. NBR 15253:
 Perfis estruturais de aço formados a frio Requisitos gerais. Rio de Janeiro, 2005.
- ABNT Associação Brasileira de Normas Técnicas. NBR 15575:
 Edificações habitacionais Desempenho. Rio de Janeiro, 2013.
- FREITAS, Marcos A. et al. Construções Racionalizadas com Light Steel Frame. São Paulo: Pini, 2014.
- SILVA, Ricardo R. da; ALMEIDA, Leonardo S. de. *Light Steel Frame: Guia Técnico e Prático*. São Paulo: Oficina de Textos, 2015.
- PINTO, José de Arimatéia. *Tecnologia da Construção de Edificios*. São Paulo: Editora Érica, 2020.

Equipamentos e ferramentas básicas utilizadas

A execução de obras no sistema **Light Steel Frame (LSF)** exige precisão e eficiência, o que torna indispensável o uso de equipamentos e ferramentas adequadas. Diferente da construção convencional em alvenaria, que demanda grande quantidade de ferramentas de corte pesado e trabalhos úmidos, o LSF se baseia na montagem de elementos pré-fabricados, utilizando conexões mecânicas e processos de fixação a seco.

O correto uso dos equipamentos garante a qualidade da montagem, reduz o risco de falhas e aumenta a produtividade da equipe. Embora muitos dos instrumentos sejam comuns à construção civil, existem ferramentas específicas para o manuseio de perfis metálicos leves, fixação de placas e aplicação de acabamentos.

Equipamentos essenciais para a montagem estrutural

Na fase de montagem da estrutura metálica, algumas ferramentas e equipamentos são indispensáveis:

1. Trenas e instrumentos de medição

A precisão é um dos pilares do LSF, e para isso utilizam-se trenas métricas, trenas a laser e réguas metálicas para medição de cortes e posicionamento dos perfis. Níveis de bolha e níveis a laser também são essenciais para conferir o prumo, alinhamento e nivelamento da estrutura.

2. Ferramentas de corte

Os perfis metálicos galvanizados são cortados com tesouras manuais de corte reto ou curvo, serras elétricas com disco apropriado para metais ou esmerilhadeiras. É importante utilizar lâminas e discos adequados para evitar o superaquecimento e a danificação da galvanização.

3. Furadeiras e parafusadeiras

As conexões no LSF são feitas principalmente por meio de parafusos autoatarraxantes. Para isso, utilizam-se parafusadeiras elétricas ou a bateria, que permitem controle de torque e rapidez na execução. Furadeiras são

usadas para a abertura de passagens para instalações elétricas e hidráulicas, além de ajustes pontuais na estrutura.

4. Fixadores e aplicadores

Além das parafusadeiras, algumas etapas requerem o uso de grampeadores e rebiteiras para fixação de componentes específicos. Esses fixadores precisam ser compatíveis com o tipo de perfil e material de fechamento utilizado.

Ferramentas para aplicação de fechamentos e isolamentos

Após a montagem da estrutura, é necessário instalar as placas de fechamento e os isolamentos. Para isso, são utilizadas:

1. Estiletes e cortadores de placas

Placas de drywall e mantas de isolamento térmico e acústico são cortadas com estiletes afiados e guias metálicas, garantindo cortes limpos e precisos.

2. Desempenadeiras e espátulas

Utilizadas no tratamento de juntas e aplicação de massas de acabamento, as desempenadeiras e espátulas ajudam a obter superfícies planas e uniformes para pintura ou revestimento.

3. Ferramentas de prensagem e fixação auxiliar

Alguns fechamentos, como placas cimentícias, podem exigir ferramentas manuais auxiliares para manter o posicionamento durante a fixação definitiva.

Equipamentos de segurança individual

O manuseio de perfis metálicos e ferramentas elétricas exige cuidados de segurança. Entre os Equipamentos de Proteção Individual (EPIs) básicos, destacam-se:

- Capacete de segurança, para proteção contra impactos.
- Luvas de corte ou luvas de couro, para evitar lesões nas mãos durante o manuseio de perfis e ferramentas.
- Óculos de proteção, para impedir a entrada de partículas metálicas ou poeira.

- **Protetores auriculares**, quando há uso prolongado de ferramentas elétricas ruidosas.
- Botas de segurança com biqueira de aço ou composite, para proteção contra quedas de materiais.

O uso adequado de EPIs é obrigatório e deve ser fiscalizado continuamente, garantindo a integridade física da equipe durante toda a execução.

Organização e manutenção das ferramentas

Além de possuir os equipamentos adequados, é fundamental garantir sua **boa conservação**. Ferramentas de corte devem estar sempre afiadas; parafusadeiras e furadeiras precisam ter baterias carregadas e em bom estado; e discos ou lâminas danificados devem ser substituídos imediatamente.

A organização do canteiro de obras, com a disposição lógica das ferramentas de acordo com as etapas de trabalho, aumenta a produtividade e reduz riscos de acidentes. O transporte e armazenamento de ferramentas devem protegêlas contra intempéries, umidade e impactos.

.com.pr

Considerações finais

O uso de equipamentos e ferramentas corretos no **Light Steel Frame** não é apenas uma questão de conveniência, mas um requisito técnico para assegurar a precisão, a qualidade e a durabilidade da construção. Desde os instrumentos de medição até as ferramentas de fixação e acabamento, cada item desempenha um papel específico na montagem e finalização da obra.

Investir em equipamentos adequados e na capacitação da equipe para utilizálos de forma correta traz beneficios diretos, como redução do tempo de execução, menor índice de retrabalhos e maior satisfação do cliente. Assim, a seleção criteriosa e o cuidado com as ferramentas são fatores estratégicos para o sucesso de qualquer projeto em LSF.

- ABNT Associação Brasileira de Normas Técnicas. NBR 15253: Perfis estruturais de aço formados a frio – Requisitos gerais. Rio de Janeiro, 2005.
- FREITAS, Marcos A. et al. *Construções Racionalizadas com Light Steel Frame*. São Paulo: Pini, 2014.
- SILVA, Ricardo R. da; ALMEIDA, Leonardo S. de. *Light Steel Frame: Guia Técnico e Prático*. São Paulo: Oficina de Textos, 2015.
- PINTO, José de Arimatéia. *Tecnologia da Construção de Edificios*. São Paulo: Editora Érica, 2020.
- OSHA Occupational Safety and Health Administration. *Hand and Power Tools Safety Manual*. Washington: OSHA, 2019.

Aplicação de placas e membranas

No sistema construtivo **Light Steel Frame (LSF)**, a aplicação correta de placas e membranas é uma etapa fundamental para garantir o desempenho estrutural, térmico, acústico e de estanqueidade da edificação. Esses elementos cumprem funções que vão além do simples fechamento das paredes e coberturas, integrando-se à estrutura para compor um sistema eficiente e durável. A escolha adequada dos materiais, associada a técnicas corretas de instalação, influencia diretamente na qualidade final da obra.

Função das placas no LSF

As placas utilizadas no LSF podem ser estruturais ou de revestimento, variando conforme sua função e localização na edificação. Entre as mais comuns estão:

- Placas OSB (Oriented Strand Board): desempenham papel estrutural, funcionando como elemento de contraventamento e contribuindo para a rigidez da estrutura. São aplicadas, geralmente, no lado externo das paredes, antes das camadas de isolamento e acabamento final.
- Placas cimentícias: utilizadas principalmente em fechamentos externos, possuem alta resistência à umidade, ao fogo e a impactos, além de suportarem diversos tipos de acabamento.
- Placas de drywall (gesso acartonado): aplicadas nos fechamentos internos, proporcionam acabamento liso e permitem instalação rápida, além de possibilitar integração de isolamento térmico e acústico.

A aplicação das placas deve seguir rigorosamente as especificações do projeto e as recomendações dos fabricantes, observando aspectos como o espaçamento entre fixadores, a folga de dilatação e o tratamento das juntas.

Função das membranas no LSF

As membranas são elementos essenciais para o controle de umidade e a manutenção do desempenho do sistema ao longo do tempo. Elas atuam como barreiras seletivas, permitindo ou bloqueando a passagem de vapor e de água conforme sua função:

- **Membranas hidrófugas**: aplicadas externamente, entre as placas estruturais e o revestimento final, impedem a penetração de água da chuva e vento, mas permitem que o vapor interno seja liberado, evitando condensação nas camadas internas.
- Barreiras de vapor: instaladas do lado interno, geralmente atrás do revestimento de drywall, bloqueiam a passagem do vapor proveniente do interior da edificação para a cavidade das paredes, prevenindo umidade e corrosão.

A correta aplicação das membranas requer atenção a detalhes como sobreposição das emendas, vedação de perfurações e uso de fitas adesivas apropriadas para garantir continuidade e estanqueidade.

Etapas e cuidados na aplicação

A aplicação de placas e membranas no LSF segue uma sequência lógica que garante a eficiência do sistema:

- 1. **Preparação da estrutura**: Antes da fixação, é necessário conferir prumo, alinhamento e esquadro da estrutura metálica, bem como a limpeza e proteção dos perfis.
- 2. **Instalação das placas estruturais**: As placas OSB ou cimentícias são fixadas diretamente nos montantes com parafusos específicos, respeitando o espaçamento indicado em projeto. É importante manter folgas mínimas entre as placas para acomodar dilatações térmicas.
- 3. **Aplicação das membranas externas**: As membranas hidrófugas são instaladas sobre as placas estruturais, com sobreposição das bordas e fixação com grampos ou fitas adesivas próprias.
- 4. **Instalação das placas internas**: No lado interno, após a colocação dos isolamentos e da barreira de vapor, as placas de drywall ou equivalentes são fixadas, com atenção especial ao tratamento das juntas e à vedação de passagens para instalações.
- 5. **Vedação e acabamento**: Todas as emendas, cantos e encontros com esquadrias devem ser devidamente vedados, garantindo a estanqueidade e evitando a entrada de água ou ar não controlado.

Erros comuns a serem evitados

Na prática, alguns erros recorrentes comprometem o desempenho das placas e membranas no LSF, como:

- Não respeitar a sobreposição mínima das membranas, permitindo infiltrações.
- Usar fixadores inadequados, causando corrosão ou fixação deficiente.
- Deixar de vedar perfurações e passagens, favorecendo entrada de umidade.
- Ignorar folgas de dilatação nas placas, ocasionando empenamentos ou fissuras.

Evitar essas falhas exige mão de obra treinada, supervisão constante e uso de materiais de qualidade.

Importância da integração entre projeto e execução

O desempenho das placas e membranas no LSF depende da integração entre as especificações de projeto e a execução. Cada elemento precisa ser corretamente dimensionado e compatibilizado com os demais componentes da parede, levando em conta as condições climáticas locais e as exigências de desempenho térmico, acústico e de estanqueidade previstas nas normas técnicas, especialmente a **ABNT NBR 15575**.

Além disso, a coordenação entre equipes é essencial: as etapas de instalação elétrica e hidráulica, por exemplo, devem ser executadas antes do fechamento definitivo das paredes, para evitar retrabalhos e danos aos elementos instalados.

Considerações finais

A correta aplicação de placas e membranas no sistema Light Steel Frame é decisiva para garantir o desempenho e a longevidade da edificação. Esses elementos atuam em conjunto para proporcionar resistência estrutural, isolamento térmico e acústico, e proteção contra agentes externos como vento e umidade.

Seguir as orientações de projeto, utilizar materiais certificados e adotar práticas de instalação adequadas são passos fundamentais para assegurar que o sistema atenda aos níveis de desempenho exigidos pelas normas brasileiras e satisfaça as expectativas de conforto e segurança dos usuários.

- ABNT Associação Brasileira de Normas Técnicas. NBR 15253: Perfis estruturais de aço formados a frio – Requisitos gerais. Rio de Janeiro, 2005.
- ABNT Associação Brasileira de Normas Técnicas. NBR 15575:
 Edificações habitacionais Desempenho. Rio de Janeiro, 2013.
- FREITAS, Marcos A. et al. *Construções Racionalizadas com Light Steel Frame*. São Paulo: Pini, 2014.
- SILVA, Ricardo R. da; ALMEIDA, Leonardo S. de. *Light Steel Frame: Guia Técnico e Prático*. São Paulo: Oficina de Textos, 2015.
- USG Boral. *Manual Técnico de Drywall e Placas Cimentícias*. São Paulo: USG Boral Brasil, 2020.

Tratamento de juntas, impermeabilização e isolamento

No sistema construtivo **Light Steel Frame (LSF)**, a etapa de **tratamento de juntas**, **impermeabilização e isolamento** é determinante para o desempenho técnico e a durabilidade da edificação. Como se trata de um método construtivo a seco, que utiliza placas e fechamentos industrializados, a vedação adequada das juntas e o controle de umidade e temperatura são essenciais para assegurar estanqueidade, conforto térmico, acústico e resistência mecânica ao longo da vida útil da obra.

Tratamento de juntas

As juntas estão presentes em diversos pontos da construção, como nos encontros entre placas de fechamento, em cantos e bordas, nas uniões entre paredes e tetos, e nos locais de passagem de instalações. O tratamento correto dessas juntas evita infiltrações, fissuras e perda de desempenho térmico e acústico.

.com.br

No LSF, o tratamento de juntas varia conforme o tipo de placa utilizada:

- **Drywall**: as juntas recebem fitas de papel ou fibra de vidro incorporadas à massa de rejuntamento, garantindo acabamento uniforme e resistência a fissuras.
- Placas cimentícias: utilizam-se fitas ou telas especiais e massas flexíveis, capazes de absorver movimentações térmicas sem trincar.
- Placas OSB: as juntas podem ser protegidas com fitas adesivas específicas, membranas de sobreposição ou selantes elásticos.

Independentemente do material, é fundamental respeitar as folgas de dilatação indicadas pelos fabricantes, especialmente em áreas externas ou sujeitas a variações significativas de temperatura. Além disso, a superfície das juntas deve estar limpa, seca e livre de poeira para assegurar a aderência dos materiais de vedação.

Impermeabilização

A impermeabilização no LSF é um elemento de proteção crítica, especialmente porque o contato prolongado da umidade com perfis metálicos pode comprometer a integridade da galvanização e provocar corrosão. O sistema de impermeabilização deve proteger tanto as áreas internas quanto externas, prevenindo infiltrações de água da chuva, umidade ascendente e condensação.

Os principais recursos utilizados incluem:

- Membranas hidrófugas e permeáveis ao vapor: aplicadas sobre placas externas, permitem a saída do vapor interno enquanto bloqueiam a entrada de água.
- Barreiras de vapor: instaladas do lado interno, impedem que o vapor produzido nos ambientes internos penetre na cavidade das paredes e condense sobre a estrutura metálica.
- Selantes e fitas vedantes: usados em pontos críticos, como contornos de janelas, portas, passagens de tubulações e transições de materiais, assegurando estanqueidade local.
- Tratamento de bases e fundações: a interface entre fundação e estrutura recebe mantas impermeabilizantes ou camadas protetoras para impedir a ascensão capilar da umidade.

A impermeabilização deve ser planejada como um sistema integrado, onde cada elemento de vedação trabalha em conjunto para evitar a penetração de água em qualquer ponto da envoltória da edificação.

Isolamento térmico e acústico

O isolamento no LSF tem dupla função: **controlar a transferência de calor** entre o ambiente interno e externo e **reduzir a transmissão de ruídos**. A instalação correta desse isolamento contribui para o conforto dos ocupantes e para o atendimento das exigências da **ABNT NBR 15575** em relação ao desempenho térmico e acústico.

Os materiais mais utilizados para isolamento em LSF são:

- Lã de vidro: leve, de fácil aplicação, oferece bom desempenho térmico e acústico, além de ser incombustível.
- Lã de rocha: apresenta desempenho superior em resistência ao fogo e isolamento acústico, sendo indicada para ambientes que exigem maior proteção.
- Isolantes de poliuretano ou poliestireno extrudado: oferecem alta eficiência térmica, sendo usados principalmente em fachadas e coberturas.
- Mantas de poliéster: alternativa sustentável, fabricada com material reciclado, resistente à umidade e ao ataque de insetos.

A colocação do isolamento deve preencher completamente o vão entre os montantes, evitando folgas ou áreas descobertas que possam gerar pontes térmicas ou acústicas. Em projetos de alto desempenho, combina-se isolamento interno com revestimentos externos adicionais, potencializando os resultados.

IDEA

Integração entre as três etapas

O tratamento de juntas, a impermeabilização e o isolamento devem ser planejados e executados de forma integrada. Erros de sequência ou incompatibilidade entre materiais podem comprometer o desempenho global. Por exemplo, instalar uma barreira de vapor de forma incorreta pode aprisionar umidade dentro da parede, prejudicando tanto o isolamento quanto a durabilidade da estrutura.

Além disso, é essencial que todos os detalhes construtivos — como beirais, peitoris, rufos e soleiras — sejam projetados para auxiliar na proteção contra a água e para garantir a continuidade dos sistemas de isolamento e vedação.

Considerações finais

O sucesso de uma construção em **Light Steel Frame** depende fortemente da atenção aos detalhes nas etapas de tratamento de juntas, impermeabilização e isolamento. Esses procedimentos não apenas preservam a integridade

estrutural e prolongam a vida útil da edificação, mas também asseguram conforto e eficiência energética para os usuários.

Seguir as recomendações dos fabricantes, adotar materiais certificados e manter mão de obra qualificada são práticas indispensáveis para garantir que o sistema atenda aos níveis de desempenho estabelecidos pelas normas brasileiras e internacionais.

- ABNT Associação Brasileira de Normas Técnicas. NBR 15575:
 Edificações habitacionais Desempenho. Rio de Janeiro, 2013.
- ABNT Associação Brasileira de Normas Técnicas. NBR 15253:
 Perfis estruturais de aço formados a frio Requisitos gerais. Rio de Janeiro, 2005.
- FREITAS, Marcos A. et al. Construções Racionalizadas com Light Steel Frame. São Paulo: Pini, 2014.
- SILVA, Ricardo R. da; ALMEIDA, Leonardo S. de. *Light Steel Frame: Guia Técnico e Prático*. São Paulo: Oficina de Textos, 2015.
- KOSMATKA, Steven H.; KERKHOFF, Beatrix. *Construction Materials, Methods and Techniques*. Clifton Park: Cengage Learning, 2019.

Considerações sobre acabamento e manutenção preventiva

O sistema construtivo **Light Steel Frame (LSF)** tem como uma de suas principais vantagens a versatilidade nos acabamentos e a baixa necessidade de manutenção quando comparado a sistemas tradicionais. Entretanto, para garantir o desempenho, a durabilidade e a estética da edificação ao longo do tempo, é fundamental compreender os cuidados necessários na fase de acabamento e a importância da manutenção preventiva.

Acabamento no LSF

O acabamento no LSF é a etapa que confere à construção o aspecto final desejado, além de complementar a proteção contra agentes externos e internos. Essa fase abrange revestimentos internos e externos, pintura, instalação de esquadrias e demais elementos visuais e funcionais.

1. Acabamentos externos

No lado externo, o acabamento deve ser escolhido considerando aspectos estéticos, climáticos e de durabilidade. Os mais comuns incluem revestimentos texturizados, pintura sobre placas cimentícias, cerâmica, porcelanato ou revestimentos ventilados. A correta preparação da superfície, a escolha de tintas adequadas (especialmente em regiões litorâneas ou de alta umidade) e a execução seguindo especificações do fabricante são essenciais para evitar problemas como descolamento, infiltração ou degradação precoce.

2. Acabamentos internos

No interior da edificação, o drywall é a solução mais usual, permitindo superfícies lisas e uniformes, que podem receber pintura, papel de parede, revestimentos cerâmicos ou laminados. A atenção ao tratamento das juntas e à aplicação de massas e primers garante um acabamento estético e resistente, evitando fissuras e imperfeições.

3. Esquadrias e interfaces

As esquadrias desempenham papel fundamental na vedação e no desempenho térmico e acústico. No LSF, sua instalação deve ser precisa, com uso de fitas e selantes adequados para garantir estanqueidade. A

interface entre esquadrias e fechamentos é um ponto crítico para prevenir infiltrações e perdas energéticas.

Manutenção preventiva no LSF

Apesar de exigir menor manutenção que construções convencionais, o LSF não é isento de cuidados. A manutenção preventiva visa identificar e corrigir pequenos problemas antes que se transformem em danos mais graves, preservando a integridade estrutural e o conforto da edificação.

1. Inspeções periódicas

A inspeção visual deve ser realizada, preferencialmente, a cada seis meses ou após eventos climáticos intensos, como tempestades. Deve-se verificar o estado dos acabamentos, a integridade das juntas, a presença de trincas, infiltrações ou sinais de umidade, bem como a condição das esquadrias e vedantes.

2. Cuidados com impermeabilização

A impermeabilização é um dos elementos mais críticos para a durabilidade do LSF. É necessário inspecionar rufos, calhas, membranas e selantes, substituindo-os caso apresentem desgaste ou fissuras. A prevenção contra infiltrações evita danos a placas e à estrutura metálica.

3. Proteção contra corrosão

Embora os perfis de aço utilizados no LSF sejam galvanizados, áreas expostas ou danificadas devem receber tratamento anticorrosivo para evitar degradação. Isso é especialmente relevante em regiões com alta salinidade no ar.

4. Limpeza e conservação

A limpeza regular das fachadas, sem uso de produtos agressivos, prolonga a vida útil do acabamento e mantém a estética da edificação. Internamente, a conservação das superfícies segue os mesmos cuidados aplicados a construções convencionais.

Benefícios da manutenção preventiva

A adoção de um plano de manutenção preventiva no LSF proporciona diversos benefícios:

- Prolonga a vida útil dos materiais e componentes.
- Reduz custos com reparos corretivos.
- Mantém o desempenho térmico, acústico e de estanqueidade.
- Valoriza o imóvel, preservando sua aparência e funcionalidade.
- Garante segurança aos ocupantes, evitando falhas estruturais e infiltrações.

Integração entre acabamento e manutenção

O acabamento e a manutenção preventiva no LSF estão diretamente relacionados. Um acabamento de qualidade, executado com materiais adequados e técnicas corretas, reduz a necessidade de manutenções frequentes. Por outro lado, a ausência de manutenção preventiva pode comprometer até mesmo os melhores acabamentos, acelerando o desgaste e reduzindo o desempenho da edificação.

A fase de projeto também desempenha papel relevante, pois a especificação de materiais duráveis, compatíveis com o clima local e de fácil manutenção, contribui para reduzir custos e aumentar a durabilidade do sistema.

Considerações finais

O **Light Steel Frame** oferece um conjunto de vantagens competitivas que podem ser potencializadas com um bom acabamento e a adoção de práticas de manutenção preventiva. Ao investir na qualidade dessa etapa e na inspeção periódica dos elementos construtivos, é possível garantir a longevidade da edificação, a satisfação dos usuários e o cumprimento das exigências normativas.

Uma construção bem-acabada e devidamente mantida não apenas preserva seu desempenho e estética, mas também reforça a confiabilidade do LSF como sistema construtivo moderno, sustentável e eficiente.

- ABNT Associação Brasileira de Normas Técnicas. NBR 15575:
 Edificações habitacionais Desempenho. Rio de Janeiro, 2013.
- FREITAS, Marcos A. et al. *Construções Racionalizadas com Light Steel Frame*. São Paulo: Pini, 2014.
- SILVA, Ricardo R. da; ALMEIDA, Leonardo S. de. *Light Steel Frame: Guia Técnico e Prático*. São Paulo: Oficina de Textos, 2015.
- CORRÊA, J. C. Manutenção Predial Preventiva. São Paulo: Editora Pini, 2019.
- KOSMATKA, Steven H.; KERKHOFF, Beatrix. Construction Materials, Methods and Techniques. Clifton Park: Cengage Learning, 2019.

