

Cultivo celular

Daniel Tait Vareschini Engenheiro Químico M.Sc.

Motivação

O que são culturas celulares?

Motivação

Atividade Intracelular:

Transcrição de DNA, síntese proteica, metabolismo energético, ciclo celular, diferenciação, apoptose

Produtos celulares:

Proteômica, secreção, biotecnologia, biorreatores

Imunologia:

Epítopos na superfície celular, hibridomas, citocinas, inflamação

Genômica:

Análises genéticas, transfecção, infecção, transformação, imortalização, senescência

Engenharia Tecidual:

Construção de tecidos, matrizes, propagação, diferenciação

Toxicologia:

Infecção, citotoxidade, mutagênese, carcinogênese, irritação, inflamação

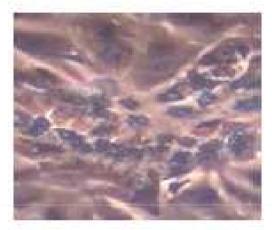
Fluxo Intracelular:

Processamento de RNA, receptores hormonais, fluxo de metabólitos, mobilização de cálcio, transdução de sinais, tráfico de membranas

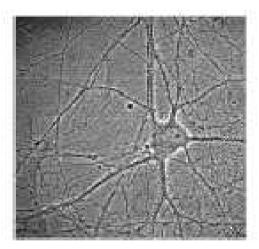
Farmacologia:

Ação de fármacos, interação entre ligante-receptor, metabolismo do fármaco, resistência a drogas

Interação Célula-célula:


Morfogênese, controle parácrino, proliferação celular, cooperação metabólica, adesão, motilidade, interação com a matriz, invasividade

Histórico Cultivo de células e tecidos


- Século 19: Sydney Ringer desenvolveu solução salina contendo cloreto de sódio, potássio, cálcio e magnésio para manter os batimentos cardíacos de um coração isolado fora do corpo;
- 1885: Wilhelm Roux manteve células embriões de galinha vivas em solução salina aquecida por vários dias;
- 1907: Ross Granville Harrison isolou pequenos pedaços da medula espinhal de anfíbios em coágulo linfático e os manteve por alguns dias;
- 1913: Alexis Carrel demonstra que células podem crescer por longos períodos em cultura, desde que alimentadas regularmente, sob condições assépticas.

Culturas Primárias

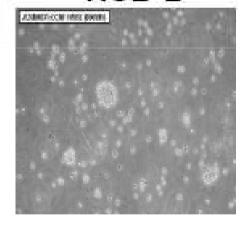
- Obtidas diretamente do tecido animal, podendo ser de origem tumoral ou não.
- Culturas de tecidos normais
 - Diplóides;
 - Dependentes de suporte;
 - Vida finita em cultura;

Células ciliadas do epitélio nasal

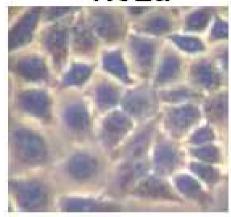
Neurónios de rato (hipocampo)

Linfócitos humanos

Linhagem celular

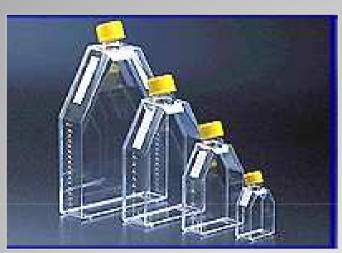

- Único tipo celular expandido
- Linhagens de vida limitada
 - Diploides;
 - Manutenção de características.
- Linhagens contínuas
 - Crescimento constante;
 - Disponibilidade ilimitada;
 - Poucas características originais.

COS-7


Células do epitélio renal de símios transformadas pelo vírus SV-40

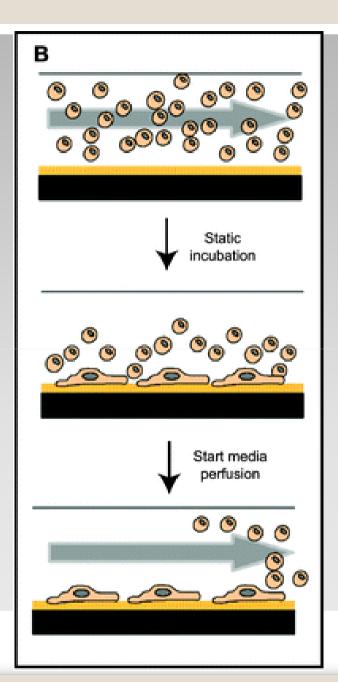
HSB-2

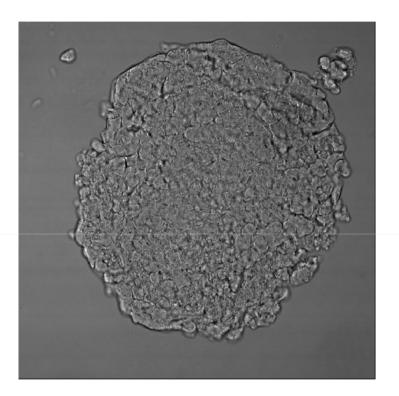
Leucemia linfoblástica aguda T

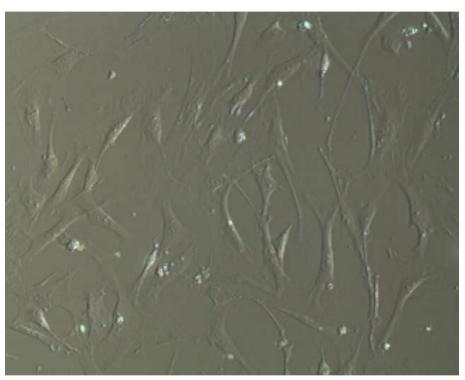

HeLa

Células epiteliais de carcinoma cervical humano

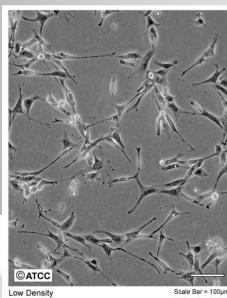
Formas de cultivo


Aderentes

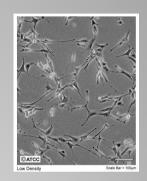


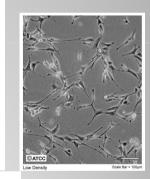


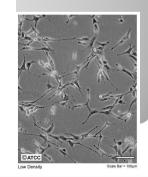
Cultura 2D



Dissociações e passagens

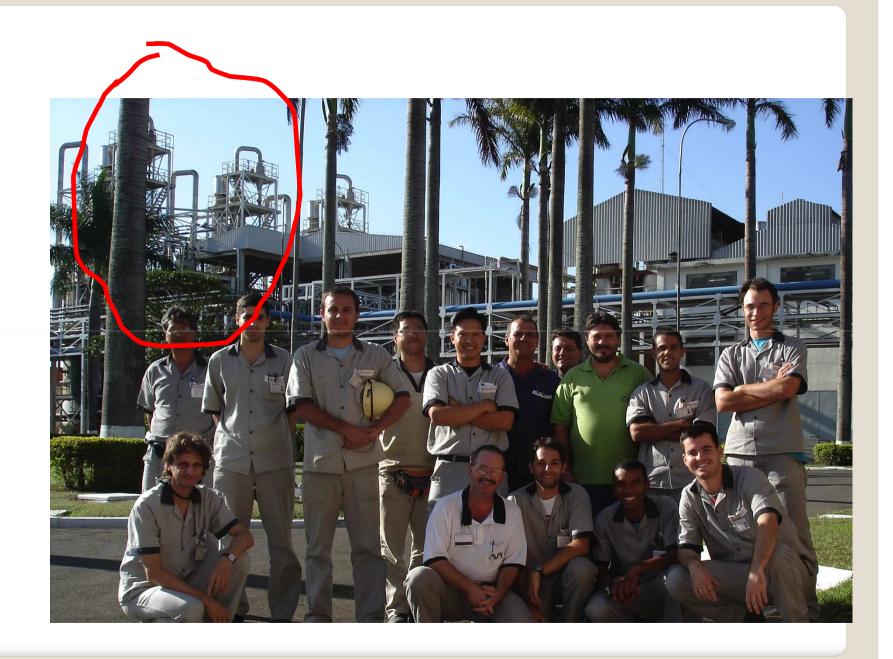


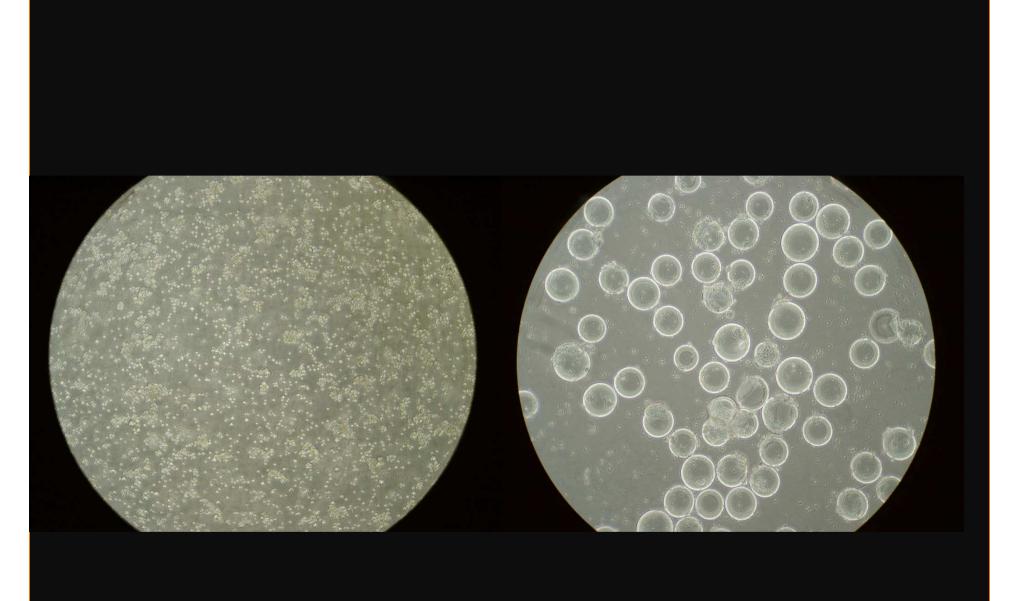




Suspensão

Prototipos (50mL à 1 litro)

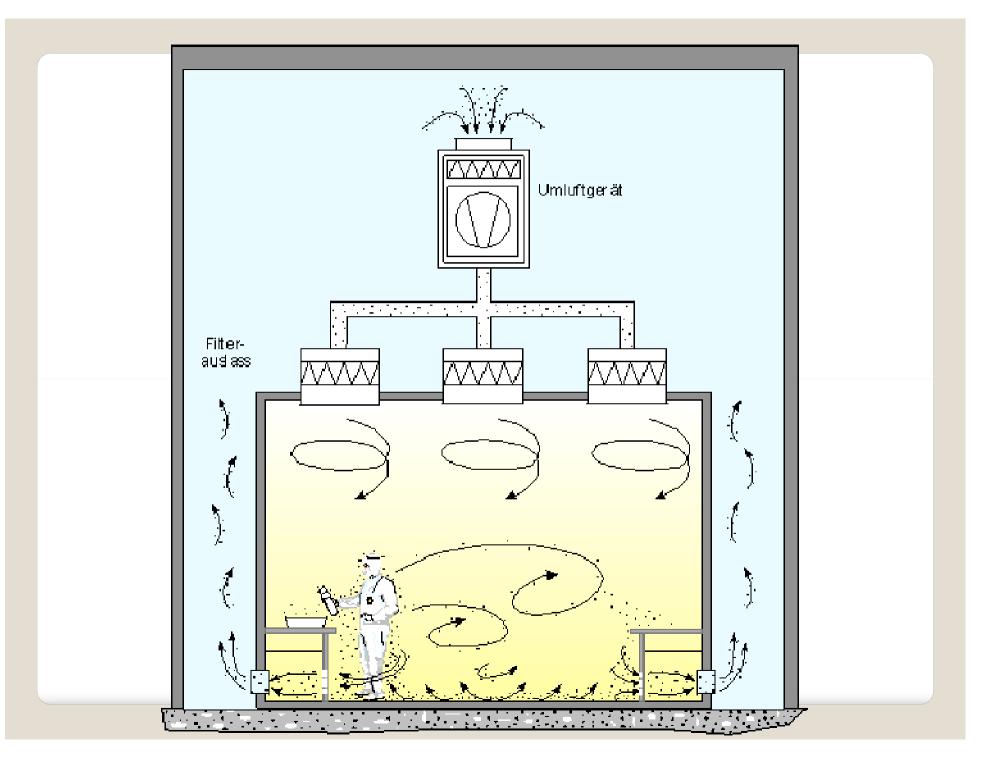


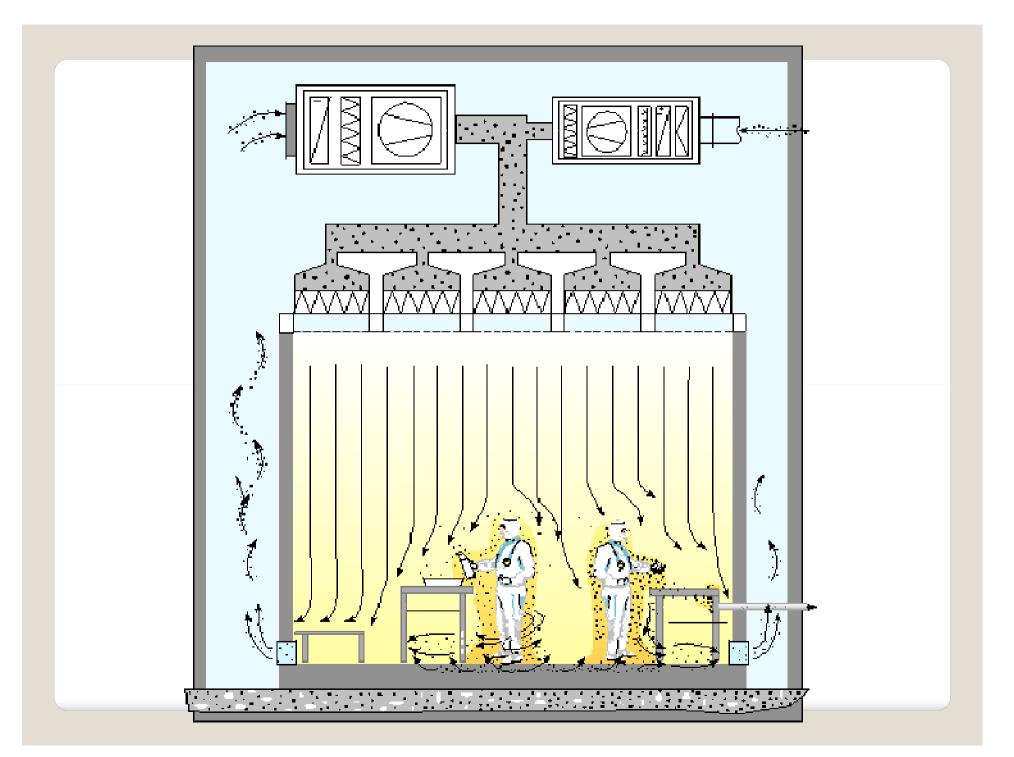

Reatores de bancada (1 a 20 litros)

Semi-industriais

50 à 500 litros

Características básicas de células


- Crescimento Lento;
- Fragilidade (ausência de parede celular);
- Necessidades Nutricionais complexas;
- Subprodutos tóxicos;
- Passiveis de contaminação.


Requisitos necessários para a manutenção da cultura de células

Zonas de controle

- Zona de recepção de material;
- Zona de trabalho (sala de cultura);
- Zona de lavagens e tratamento do material;

Salas de cultura

Classificação ISO

• ISO classe 8 (100.000 ou D)

ISO classe 7 (10.000 ou C)

ISO classe 5 (100 ou A)

Equipamentos

- · Câmaras de fluxo laminar;
- Incubadoras;
- · Centrífugas ;
- · Microscópio.

Preservação de linhagens

- Risco de contaminação;
- Perda de características;
- Alterações genéticas;
- Perda devido a vida finita;
- Contaminação cruzada;
- Alto custo pessoal e reagentes.

Criopreservação

Nitrogênio liquido;


 Níveis de energia cinética tão baixos a -196°C que não permitem os movimentos moleculares.

Pré-requisitos

- Alta viabilidade >=90%;
- De preferência em fase exponêncial;
- Agentes crioprotetores
 - Soro;
 - DMSO;
 - Glicerol.

Preservação

- Perigos
 - Danos ao material genético;

- Injurias causadas pelo congelamento e descongelamento sucessivos
 - Estrutura de membranas;
 - Contração citoplasmática;
 - Agregação de citoesqueleto;
 - Alterações na cadeia respiratória.

Precauções

- Congelamento lento;
- Descongelamento rápido;
- Compartimentos numerados;
- Identificação;
- Tanque em local ventilado;
- Treinamento para manipulação de N₂.

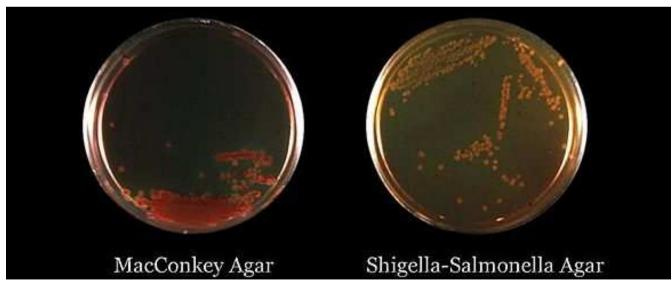
Bancos de células

Banco Mestre;

Banco de trabalho.

Meios de cultivo

 Viabilizar o crescimento dos diversos tipos de microorganismos e células.



Meios de cultivo

- Fonte de carbono;
- Fontes de energia;
- Fonte de elementos essenciais para crescimento.

Microorganismos - Agar

De uma maneira geral quanto maior a complexidade da célula em questão maior o seu requerimento nutricional.

Meios de cultivo

- água
- sais inorgânicos;
- açúcares;
- aminoácidos;
- vitaminas;
- Lipídios;

- ácidos orgânicos;
- proteínas;
- hormônios;
- fontes de carbono;
- fontes de nitrogênio;
- micronutrientes (íons orgânicos e minerais);

Maiores requerimentos

- Nutrição;
- Adesão celular;
- Proteção biológica (antioxidantes e antitoxinas);
- proteção mecânica para células.

Histórico

- Eagle (1955)
 - Necessidades nutricionais de fibroblastos murinos e células HeLa (Science)
 - Definiu assim um meio chamado de meio mínimo essencial de EAGLE (MEM)

Histórico

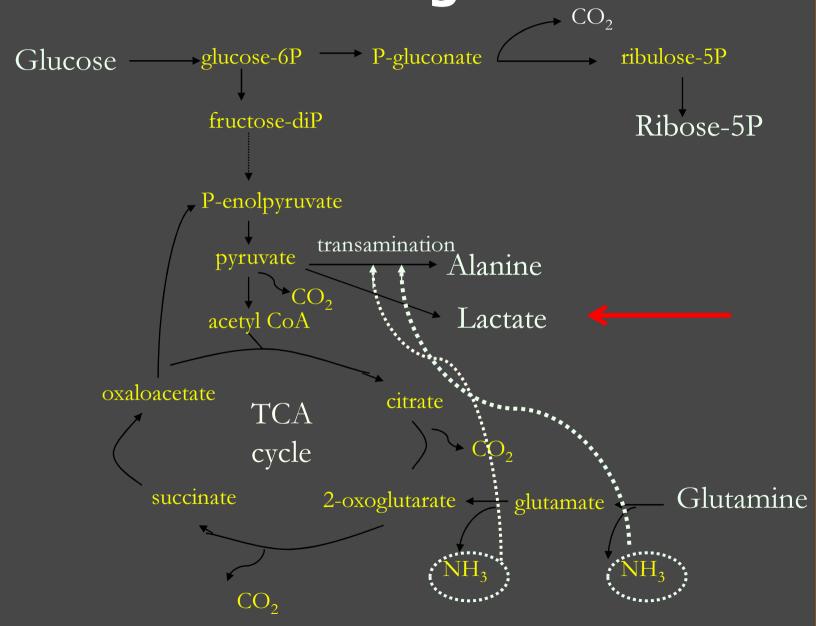
A partir dos anos 1980, células animais passaram a ser utilizadas industrialmente na produção de biofármacos.

- produtividade;
- reprodutibilidade de experimentos;
- custos de fabricação;
- especificidade de requerimentos nutricionais.

Meios mais comuns

- BME Basal de Eagle
- EMEM Mínimo de Eagle
- DMEM Dulbecco 4x aminoácidos , vitaminas
- GMEM Glasgow 2x aminoácidos , vitaminas + glicose e bicarboanto
- RPMI Roswell Park Memorial
- Leibovitz fibroblastos
- Alfa MEM varios propósitos
- Ham´s F10 embriões de galinha
- Ham`s F12 complexo de suplementos
- Ham´s F14 estudo de neurônios sensoriais
- IMDM Iscove
- MCDB fibroblastos humanos
- KO-DMEM

Componentes


Glicose

- Fonte de carbono e energia
- 5-25mM
- Alta velocidade de consumo

Glutamina

- Fonte de carbono, nitrogênio e energia
- 1-5mM
- Alta velocidade de consumo

Metabolismo energético

Controle metabólico

- Amônia 2 a 4mM
 - afeta vias de transporte de K+, requerendo maior energia da célula para manutenção do gradiente iônico
- Lactato > 20mM
 - Aumento da acidez e osmolalidade
- Alanina;

Suplementação

Aditivos complexos e indefinidos;

Soro fetal bovino.

Soro fetal bovino

O soro é um suplemento COMPLEXO rico em proteínas, que estimula o transporte de glicose, fosfato e aminoácidos e aumenta a permeabilidade das membranas.

Problemas do SFB

 contaminações por parasitas, bactérias, fungos, micoplasmas, vírus e príons;

Variabilidade lote a lote.

Cuidados no preparo de Meio

Esterilização

- Componentes termosensíveis;
- Esterilização por filtração;
- Filtros 0,22 μm.

Contaminações de cultivos

- Segurança
 - Pessoal;
 - Produto;
 - Ambiental.

Características principais

- Mudança repentina de pH;
- Turbidez do meio ;
- Deterioração da cultura: queda de viabilidade, alterações no metabolismo

Principais contaminantes

- Bactérias;
- Leveduras e fungos filamentosos;
- Protozoários;
- Virus;
- Micoplasma.

Micoplasmas

 Menores procariontes existentes capazes de se propagar livremente

 Tem cerca de 0,3µm de diâmetro e forma de coccus

Micoplasmas

- Principais problemas
 - Redução da velocidade de proliferação
 - Aberrações cromossomicas
 - Alteração do metabolismo
 - Aglutinação de células em suspenção
 - Resposta modificada a estimulos externos
 - Alteração da eficiência de transfecção

Como eliminar

- Rastreabilidade
- Controle de qualidade
- Revisão de técnicas e procedimentos

Controles de Parâmetros fisico-químicos

Oxigenação

- Oxigênio no ar 21%;
- Células realizam principalmente glicólise;
- Geração de radicais livres;
- Morte provocada por contato.

Temperatura

Ideal 37° C;

Valores baixos menos danosos;

Evitar variações bruscas;

Osmolaridade

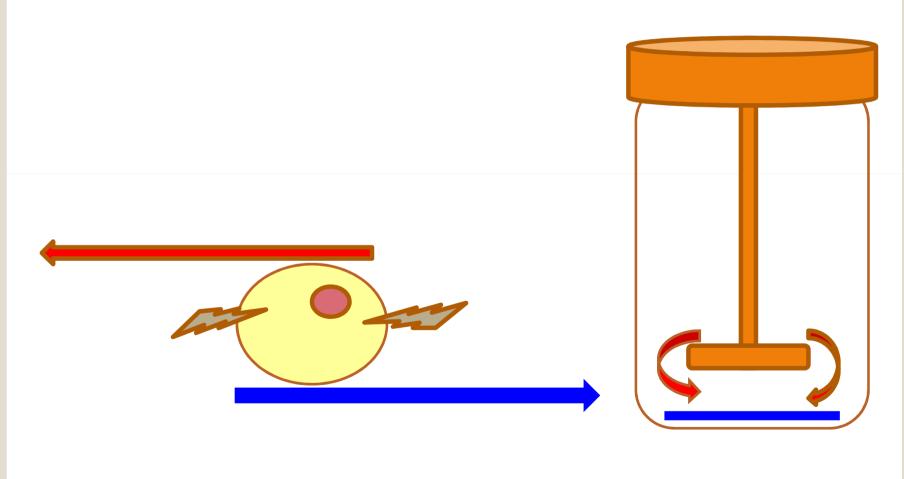
Manutenção da pressão osmótica

- 260 to 320 mOsm/kg (cél. animais)
- 340 to 390 mOsm/kg (células insetos)

pН

- 7.2 7.4 (células animais)
- · 6.2 6.8 (células insetos)

Sistema tamponante


Bicarbonato /CO₂

Tamponamento com bicarbonato

$$CO_2 + H_2O <-> H_2CO_3 <-> H^+ + HCO_3^-$$

$$NaHCO_3 <-> Na^+ + HCO_3^-$$

Fragilidade a tensões

Aumento de Produtividade

- Otimização de parâmetros de crescimento;
- Otimização de meios de cultivo;
- Otimização da expressão proteica;
- Aumento de escala de cultivos.

Bibliografia

- Tecnologia do Cultivo de células animais de biofarmacos a terapia gênica, Angela Moraes, Elisabeth Augusto e Leda Castilho, Ed. Roca, 2008.
- Biotecnologia Industrial, Processos fermentativos e enzimáticos, Urgel de Almeida Lima, Eugênio Aquarone, Walter Borzani e Willibaldo Schimidell, Ed. Edgar Blucher, 2001.
- Cell Culture Technology for pharmaceutical and cellbased therapies, Sadettin S. Ozturk, Wei-Shou Hu, Taylor e Francis, 2006.
- Animal cell culture & Technology, Michael Butler, BIOS Scientific Publishers, 2004.
- Laboratory Procedures in Biotechnology, Alan Doyle e J. Bryan Griffits, Ed. John Wiley & Sons Ltd, 1998.