AUTOMAÇÃO E PROGRAMAÇÃO DE CLPS

Introdução à Automação Industrial e CLPs

Conceitos Básicos de Automação Industrial

Definição de Automação Industrial

Automação industrial refere-se ao uso de sistemas de controle, como computadores e robôs, e tecnologias da informação para manejar diferentes processos e maquinários em uma indústria, substituindo, em muitos casos, o trabalho humano. Estes sistemas são projetados para operar máquinas, controlar processos industriais e gerenciar sistemas de produção de maneira eficiente e segura. A automação visa aumentar a produtividade, melhorar a qualidade do produto e reduzir custos operacionais.

História e Evolução da Automação

A história da automação industrial é marcada por avanços tecnológicos que transformaram a maneira como os produtos são fabricados. O conceito de automação começou a ganhar forma durante a Revolução Industrial, no século XVIII, com a introdução de máquinas a vapor e ferramentas mecânicas. No início do século XX, a introdução da eletricidade e dos motores elétricos permitiu a criação de linhas de montagem e a produção em massa.

Na década de 1950, com o advento dos primeiros controladores lógicos programáveis (CLPs), a automação industrial deu um grande salto. Esses dispositivos eletrônicos permitiram a automação de processos complexos de forma flexível e reprogramável. Com o desenvolvimento dos computadores e da tecnologia da informação nas décadas seguintes, a automação industrial se expandiu para incluir sistemas de controle distribuído (DCS), supervisão e aquisição de dados (SCADA), e robótica avançada.

Hoje, a automação industrial continua a evoluir com o avanço da Internet das Coisas (IoT), inteligência artificial (IA) e big data, permitindo a criação de fábricas inteligentes, onde sistemas interconectados podem coletar, analisar e agir sobre dados em tempo real para otimizar operações.

Benefícios e Aplicações da Automação na Indústria

Os benefícios da automação industrial são vastos e impactam positivamente várias áreas da produção industrial. Entre os principais benefícios, destacamse:

- 1. **Aumento da Produtividade:** Sistemas automatizados podem operar continuamente sem necessidade de pausas, aumentando significativamente a produção.
- 2. **Melhoria da Qualidade:** A automação reduz a variabilidade e os erros humanos, garantindo produtos mais consistentes e de alta qualidade.
- 3. **Redução de Custos Operacionais:** Embora o investimento inicial possa ser alto, a automação reduz custos a longo prazo, diminuindo a necessidade de mão-de-obra, aumentando a eficiência energética e reduzindo desperdícios.

- 4. **Segurança:** Sistemas automatizados podem executar tarefas perigosas, minimizando o risco de acidentes e melhorando a segurança do trabalho.
- 5. **Flexibilidade:** A automação permite a rápida adaptação a mudanças de produção, facilitando a customização e a introdução de novos produtos.

As aplicações da automação na indústria são diversas e abrangem praticamente todos os setores. Na manufatura, a automação é utilizada em linhas de montagem, controle de qualidade e embalagem. Na indústria química, é essencial para o controle preciso de processos complexos. No setor de alimentos e bebidas, a automação garante a segurança e a qualidade dos produtos. Além disso, a automação é fundamental na indústria automotiva, farmacêutica, eletrônica e em muitas outras áreas.

Em resumo, a automação industrial é uma força motriz por trás da modernização das indústrias, permitindo operações mais eficientes, seguras e produtivas. Com a contínua evolução tecnológica, a automação está se tornando cada vez mais sofisticada e acessível, moldando o futuro da produção industrial.

Fundamentos de CLPs (Controladores Lógicos Programáveis)

O que é um CLP e sua importância na automação

Um Controlador Lógico Programável (CLP) é um dispositivo eletrônico utilizado na automação industrial para controlar processos e máquinas de forma automatizada. Os CLPs são projetados para receber informações de sensores e outros dispositivos de entrada, processar essas informações com base em um programa predefinido e enviar sinais de comando para atuadores e dispositivos de saída.

A importância dos CLPs na automação é significativa devido à sua capacidade de proporcionar controle preciso e confiável de processos industriais. Antes da introdução dos CLPs, os sistemas de controle eram predominantemente mecânicos ou elétricos, o que tornava a modificação de processos complexa e cara. Os CLPs oferecem uma solução flexível e programável, permitindo ajustes rápidos e eficientes em processos automatizados sem a necessidade de alterações físicas no hardware. Eles são amplamente utilizados em diversos setores, como manufatura, processamento químico, automotivo, alimentício e muitos outros.

Estrutura e componentes de um CLP

A estrutura de um CLP é composta por vários componentes essenciais, cada um desempenhando um papel crucial no funcionamento do dispositivo. Os principais componentes de um CLP são:

- 1. Unidade Central de Processamento (CPU): A CPU é o "cérebro" do CLP, responsável por executar o programa de controle armazenado na memória. Ela processa as entradas e determina as saídas com base na lógica do programa.
- 2. Memória: A memória de um CLP armazena o programa de controle e os dados necessários para a operação. Existem diferentes tipos de memória, incluindo memória RAM (para armazenamento temporário de dados) e memória ROM ou EEPROM (para armazenamento permanente do programa).
- 3. **Módulos de Entrada e Saída (I/O):** Os módulos de entrada recebem sinais de sensores e dispositivos de entrada, como botões e interruptores. Os módulos de saída enviam sinais para atuadores e dispositivos de saída, como motores, válvulas e lâmpadas. Esses módulos podem ser digitais ou analógicos, dependendo do tipo de sinal que manipulam.
- 4. Fonte de Alimentação: A fonte de alimentação fornece a energia elétrica necessária para o funcionamento do CLP e de seus componentes.
- 5. **Interface de Comunicação:** Os CLPs geralmente possuem interfaces de comunicação que permitem a conexão com outros dispositivos, como computadores, redes industriais e sistemas SCADA. Essas interfaces possibilitam a troca de dados e o controle remoto do CLP.
- 6. **Interface de Programação:** A interface de programação permite ao usuário desenvolver, testar e carregar programas no CLP. Isso é geralmente feito através de um software específico, que pode ser instalado em um computador.

Tipos de CLPs disponíveis no mercado

Os CLPs disponíveis no mercado podem ser classificados de diversas maneiras, dependendo de suas características e capacidades. Alguns dos tipos mais comuns de CLPs incluem:

- 1. **CLPs Compactos:** São unidades integradas onde todos os componentes (CPU, memória e I/O) estão em um único módulo. Eles são ideais para aplicações simples e de pequeno porte devido ao seu tamanho compacto e custo reduzido.
- 2. CLPs Modulares: Esses CLPs são compostos por vários módulos que podem ser adicionados ou removidos conforme necessário. Isso oferece maior flexibilidade e capacidade de expansão, tornando-os adequados para aplicações de médio a grande porte.
- 3. **CLPs Montáveis em Rack:** Semelhantes aos CLPs modulares, mas projetados para serem montados em racks industriais. Eles oferecem alta densidade de I/O e são usados em grandes sistemas de automação.
- 4. **CLPs Baseados em PC:** Utilizam a arquitetura de um computador pessoal para executar funções de controle. Eles oferecem poder de processamento avançado e são adequados para aplicações complexas que requerem capacidade de processamento e integração com outros sistemas de TI.
- 5. **CLPs de Segurança:** Projetados especificamente para aplicações onde a segurança é crítica, como em sistemas de controle de processos perigosos. Eles possuem funcionalidades e certificações adicionais para garantir a operação segura.

6. **CLPs Soft:** São soluções baseadas em software que executam funções de CLP em um hardware de PC padrão. Eles oferecem flexibilidade e podem ser usados em conjunto com outras aplicações de software industrial.

Os CLPs desempenham um papel fundamental na automação industrial, proporcionando controle preciso e eficiente de processos. Com uma variedade de tipos disponíveis, é possível escolher o CLP mais adequado para cada aplicação específica, garantindo a otimização e a segurança das operações industriais.

Ambiente de Desenvolvimento para CLPs

Introdução aos Softwares de Programação de CLPs

Os softwares de programação de CLPs são ferramentas essenciais que permitem aos engenheiros e técnicos desenvolverem, testarem e implementarem programas de controle para controladores lógicos programáveis. Esses programas definem como o CLP deve processar as entradas e saídas para controlar um processo industrial. Existem diversos softwares de programação de CLPs disponíveis no mercado, cada um com suas particularidades, mas todos compartilham funcionalidades básicas que facilitam a criação e gestão de projetos de automação.

Alguns dos softwares mais comuns incluem:

- 1. **RSLogix 5000/Studio 5000 (Rockwell Automation):** Utilizado para programar CLPs da linha Allen-Bradley.
- 2. **STEP 7 (Siemens):** Usado para programar CLPs da série S7 da Siemens.
- 3. **TIA Portal (Siemens):** Integra diversas ferramentas de engenharia para o desenvolvimento de projetos com CLPs Siemens.
- 4. GX Works (Mitsubishi): Para CLPs da série Mitsubishi.
- 5. **TIA Portal:** Usado para programar CLPs da Siemens.
- 6. **Unity Pro (Schneider Electric):** Para CLPs da linha Modicon da Schneider Electric.

Esses softwares geralmente oferecem suporte a múltiplas linguagens de programação, como Ladder, Texto Estruturado, Blocos Funcionais e Diagrama de Fluxo de Dados, de acordo com a norma IEC 61131-3.

Configuração do Ambiente de Desenvolvimento

Para configurar o ambiente de desenvolvimento para CLPs, siga os passos abaixo:

1. Instalação do Software:

- Baixe o software de programação de CLPs apropriado para o seu controlador específico do site do fabricante.
- Siga as instruções de instalação fornecidas pelo fabricante para instalar o software no seu computador.

2. Configuração da Interface de Comunicação:

- o Conecte o CLP ao seu computador usando o cabo de comunicação apropriado (USB, Ethernet, RS-232, etc.).
- Configure a interface de comunicação no software de programação para estabelecer a conexão entre o CLP e o computador. Isso geralmente envolve selecionar a porta de comunicação correta e configurar parâmetros como taxa de transmissão (baud rate).

3. Criação de um Novo Projeto:

- Abra o software de programação e selecione a opção para criar um novo projeto.
- Defina o nome do projeto e selecione o modelo do CLP que você está utilizando. Isso permite que o software configure automaticamente as opções e módulos disponíveis para o seu controlador específico.

4. Configuração de Hardware:

- Adicione os módulos de entrada e saída utilizados no seu sistema ao projeto. Isso inclui especificar o tipo e a quantidade de entradas e saídas digitais e analógicas.
- Configure os parâmetros de cada módulo conforme necessário,
 como endereços de I/O e tipos de sinal.

Primeiros Passos na Criação de um Projeto de CLP

Uma vez configurado o ambiente de desenvolvimento, você pode começar a criar o seu projeto de CLP seguindo os passos abaixo:

1. Desenvolvimento do Programa:

- Selecione a Linguagem de Programação: Escolha a linguagem de programação adequada para o seu projeto (Ladder, Texto Estruturado, Blocos Funcionais, etc.).
- Criação de Diagramas e Blocos: Use o editor gráfico para criar diagramas Ladder ou blocos funcionais que representam a lógica do controle. Adicione contatos, bobinas, temporizadores, contadores e outros elementos necessários para implementar a lógica desejada.

2. Configuração das Variáveis:

- Definição das Variáveis de Entrada e Saída: Crie variáveis para representar os sinais de entrada e saída do CLP. Essas variáveis são usadas no programa para ler o estado dos sensores e controlar os atuadores.
- Mapeamento das Variáveis: Mapeie as variáveis de entrada e saída para os endereços físicos dos módulos de I/O configurados anteriormente.

3. Simulação e Teste:

- Simulação do Programa: Utilize as ferramentas de simulação do software de programação para testar o programa em um ambiente virtual. Isso permite verificar o funcionamento da lógica de controle sem a necessidade de conectar ao hardware real.
- Depuração: Utilize as funcionalidades de depuração (debugging) para monitorar o estado das variáveis e identificar possíveis erros no programa. Faça ajustes conforme necessário.

4. Download para o CLP:

- o **Transferência do Programa:** Após verificar que o programa está funcionando corretamente na simulação, transfira o programa para o CLP. Isso é feito através da interface de comunicação configurada anteriormente.
- Teste no Ambiente Real: Teste o programa no ambiente real de operação, observando o comportamento do sistema automatizado e garantindo que todas as funcionalidades estão operando conforme esperado.

5. Documentação e Manutenção:

Documentação do Projeto: Documente o programa e o projeto, incluindo diagramas, variáveis utilizadas, e descrição das funções implementadas. Isso facilita futuras manutenções e atualizações.

 Manutenção do Sistema: Realize manutenções periódicas no sistema de automação, atualizando o programa conforme necessário para otimizar a operação e incluir novas funcionalidades.

Com esses passos, você terá configurado um ambiente de desenvolvimento robusto para CLPs e estará pronto para criar, testar e implementar programas de automação industrial de forma eficiente e segura.

