

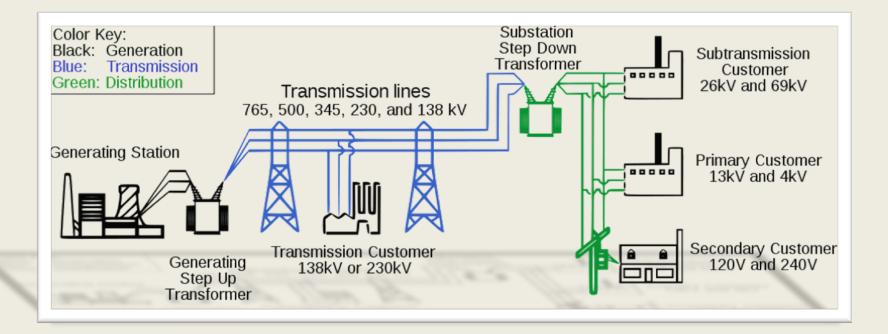
Análise de Sistemas Elétricos de Potência 1

Aula 03: Representação do Sistema Elétrico de Potência

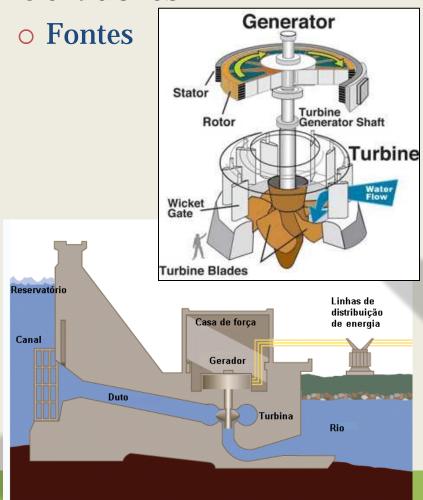
Prof. Flávio Vanderson Gomes

Ementa Base

- 1. Visão Geral do Sistema Elétrico de Potência;
- 2. Representação dos Sistemas Elétricos de Potência;
- 3. Revisão de Circuitos Trifásicos Equilibrados e Desequilibrados;
- 4. Revisão de Representação "por unidade" (PU);
- 5. Componentes Simétricas;
- Representação Matricial da Topologia de Redes (Ybarra, Zbarra);
- 7. Cálculo de Curto-circuito Simétrico e Assimétrico;
- 8. Cálculo Matricial do Curto-circuito;
- 9. Introdução ao Cálculo de Fluxo de Potência.


Sistemas Elétricos de Potência (SEP)

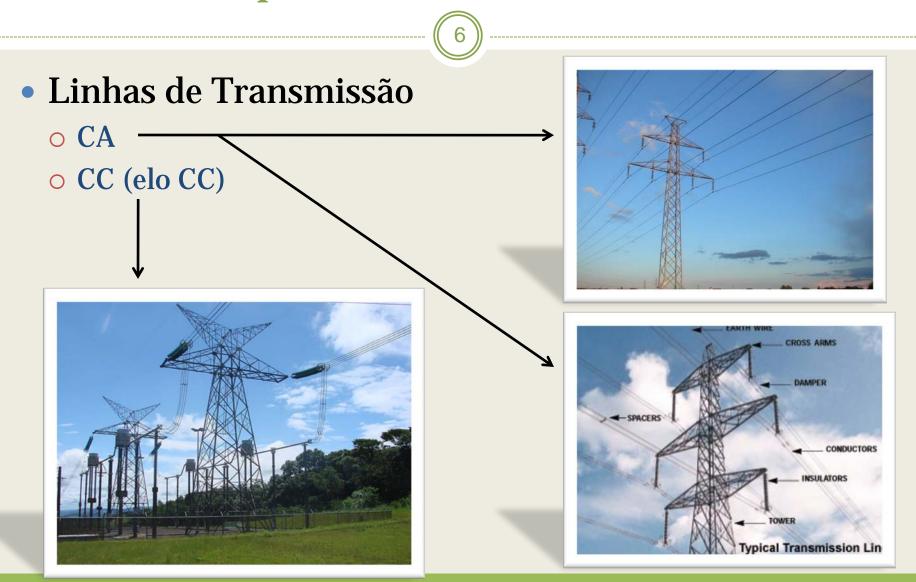
Geração


Transmissão

Distribuição

4

Geradores


Transformadores

- Elevadores e Abaixadores
- Subestações

Fonte: WEG

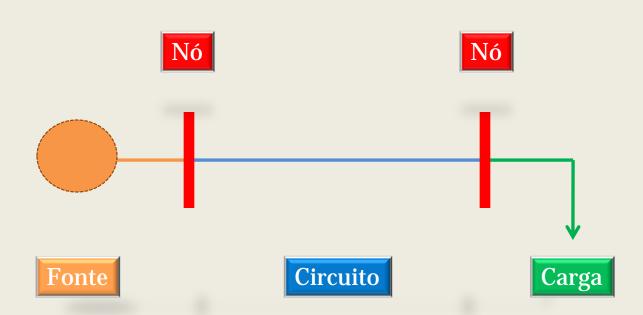
7

• Alimentadores de Distribuição

8

Cargas

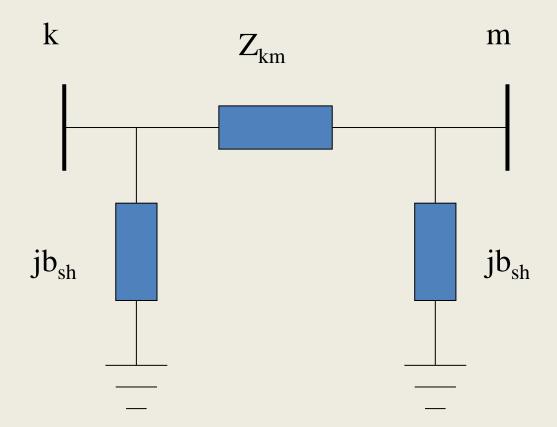
- Consumidores Industriais,
- Comerciais,
- Residenciais.



Representação de Rede

- A representação da rede é feita por:
 - o Nós:
 - **▼** Barras, Barramentos, Postes, etc.
 - o Fonte(s):
 - ▼ Gerador, Fontes de Tensão, Fontes de Corrente, etc.
 - O Circuitos:
 - ▼ Linha (Transmissão ou Distribuição), Alimentadores, Transformadores, etc.
 - o Carga(s):
 - **▼** potência constante consumida, impedância constante , etc.

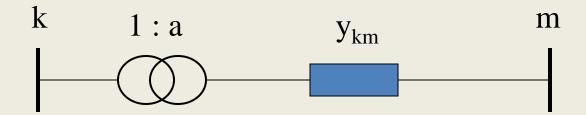
Representação de Rede



Representação de Barramentos, Chaves e Disjuntores

- Chaves e disjuntores
 - Modelos
- Barramentos
 - O Tipos
 - Representações (node&branch) ou (switch&component)

Representação de Linhas


Representação de Linhas

- Parâmetros Concentrados.
- Modelo Simplificado:
 - o Ramo RL em série
- Modelo PI:
 - o Ramo RL em série
 - o Ramos Bsh (capacitivo) em derivação (shunt)
- Modelo PI equivalente:
 - Elementos RLC com correção hiperbólica em função do comprimento da linha.
 - Usado em LT devido as dimensões elevadas.

Representação de Transformadores

Representação de Fontes

• Fontes:

- Valores Especificados:
 - × Módulo,
 - × Fase (ângulo),
 - ▼ Potência Ativa Gerada,
 - × Potência Reativa Gerada ou Consumida.
 - × Frequência.

Representação de Cargas

16

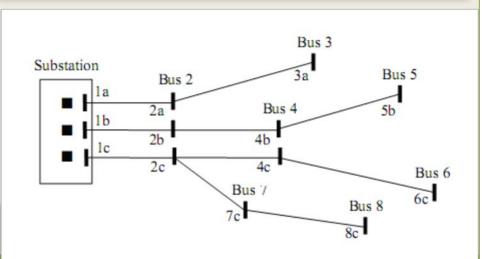
• Tipos:

- O Potência Constante:
 - ➤ Potência ativa e reativa consumida é constante e independente da tensão de alimentação.
- Occupante Constante:
 - ★ A carga consome uma corrente constante independente da tensão de alimentação.
- o Impedância Constante:
 - ★ A carga se comporta (e pode ser representada) como uma impedância (com R, L e C constantes).
- o Mista:
 - ▼ Carga com parcelas de potência, corrente e impedância constante.
- Outros.

Representação de Shunts

- Capacitores ou indutores;
- Fixos ou variáveis;
- SVCs

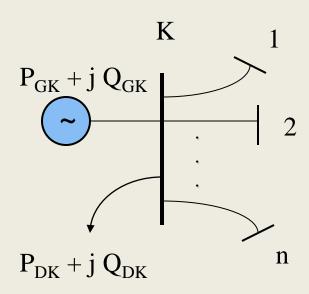
Tipos de Sistema


Sistemas Malhados

- Potência ativa circula na rede.
- Sistemas de Transmissão.

Sistemas Radiais

- Potência ativa sai das fontes e flui para as cargas.
- Sistemas de Distribuição.



Observações Importantes Sobre Redes

Leis de Kirchhoff:

- 1^a Lei de Kirchhoff (Lei das Correntes ou Leis dos Nós)
 - Soma das correntes que entram ou saem de um nó é nula
- 2ª Lei de Kirchhoff (Lei das Tensões ou Lei das Malhas)
 - Soma das d.d.p (diferenças de potencial elétrico) em um percurso fechado é nula.
- A tensão em um nó é única.
- O Nó Terra possui tensão zero.
 - O nó de neutro pode apresentar tensão não nula (ex: falhas no aterramento).

