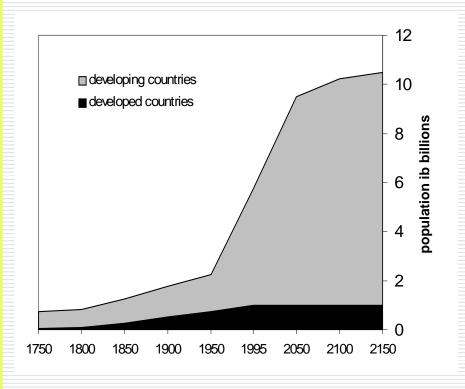


Gestão das Águas urbanas e a Drenagem

Carlos E. M. Tucci


Instituto de Pesquisas Hidráulicas UFRGS – Porto Alegre-RS Brasil

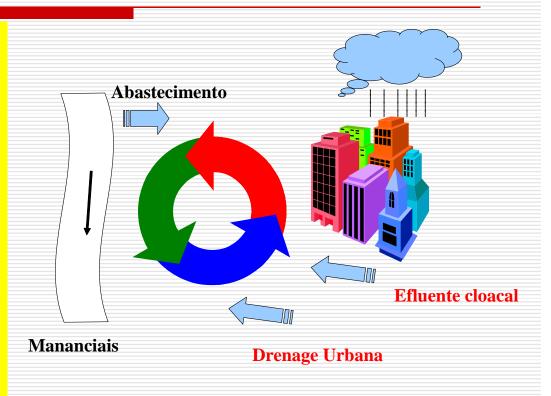
Conteúdo

- Desenvolvimento urbano e a fonte de impacto na gestão das águas
- ☐ As fases da Gestão das Águas Urbanas
- □ Vulnerabilidade urbana
- ☐ Gestão da Bacia e da Cidade
- ☐ Plano de Águas Pluviais

Desenvolvimento Urbano

- ☐ Grande taxa de crescimento em países em desenvolvimento;
- ☐ Redução nos países desenvolvidos
- ☐ Taxa de estabilização de 2,1 filhos por casal;
- ☐ A urbanização reduz a natalidade e o Brasil deve estabilizar sua população em cerca de 220 milhões

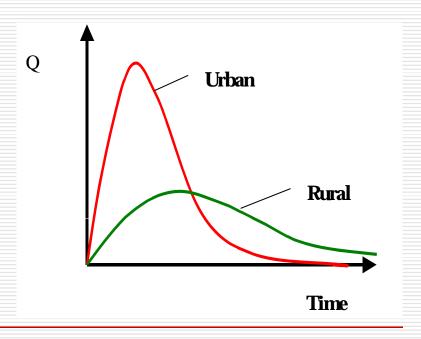
Crescimento urbano no Brasil


50% da população em
cidades acima de 100 mil
habitantes

- O país tende a estabilização da população (~2,1 filhos por casal).
- 83% da população (urbana) ocupam ~ 1% do território brasileiro
- Crescimento alto de periferia
- ☐ Desenvolvimento irregular
- ☐ Cidade legal e ilegal

Ano	População Milhões de habitantes	Parcela da população urbana %
1970	93,1	55,9
1980	118,0	68,2
1991	146,8	75,6
1996	157,1	78,4
20001	169,0	81,1

Ciclo de contaminação


- ☐ Retirada de água a montante
- ☐ Despejo a jusante sem tratamento dos efluentes;
- ☐ Transferência dos impactos para jusante;
- ☐ Sempre haverá uma cidade a montante e outra a jusante com o crescimento urbano
- ☐ Ciclo de impactos generalizados

Águas Pluviais

- Inundações ribeirinhas. inundações naturais resultado da flutuação dos rios durante os períodos secos e chuvosos. Os problemas ocorrem devido a ocupação das áreas de riscos pela população.
- Inundações devido a urbanização (drenagem urbana): escoamento em áreas urbanizadas, geralmente pequenas bacias. A urbanização amplia as vazões devido a canalização e a impermeabilização do solo.

Belo Horizonte

Impactos da urbanização

- Aumento da vazão máxima, frequência da inundação devido a impermeabilização e canalização;
- Aumento da erosão, resíduos sólidos e da carga de poluentes com redução da qualidade da água de jusante.
- ☐ Escorregamento de encostas.
- Doenças de veiculação hídrica: leptospirose e outras
- ☐ Inundações ribeirinhas

Estágios das águas urbanas em países desenvolvidos

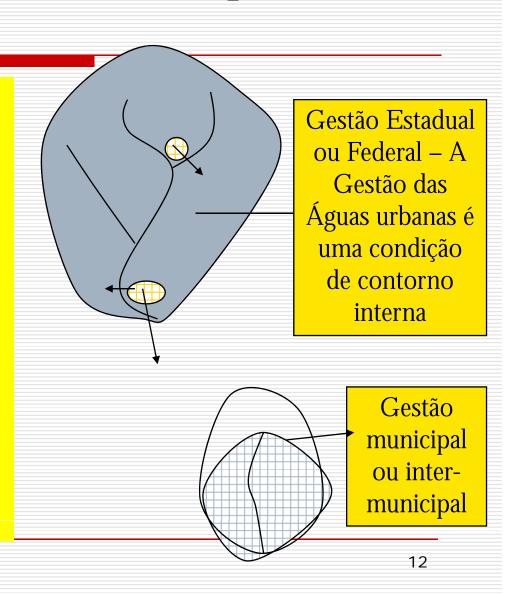
Anos	Período	Características
Até 1970	Higienista	Abastecimento de água sem tratamento de esgoto, transferência para jusante do escoamento pluvial por <u>canalização</u>
1970- 1990	Corretivo	Tratamento de esgoto, a <i>mortecimento</i> quantitativo da drenagem e controle do impacto existente da qualidade da água pluvial. Envolve principalmente a atuação sobre os impactos.
1990* - ?	sustentável	Planejamento da ocupação do espaço urbano obedecendo os mecanismos naturais de escoamento; Controle dos micro-poluentes, da poluição difusa e o desenvolvimento sustentável do escoamento pluvial através da recuperação da infiltração.

Vulnerabilidades urbanas

- ☐ Redução da disponibilidade hídrica
- □ Agravamento ambiental: qualidade da água, emissão de gases, fragmentação dos ambientes.
- ☐ Vulnerabilidades ao: Aumento da freqüência das inundações urbanas e seus efeitos, saúde, etc.

Agravamento Ambiental

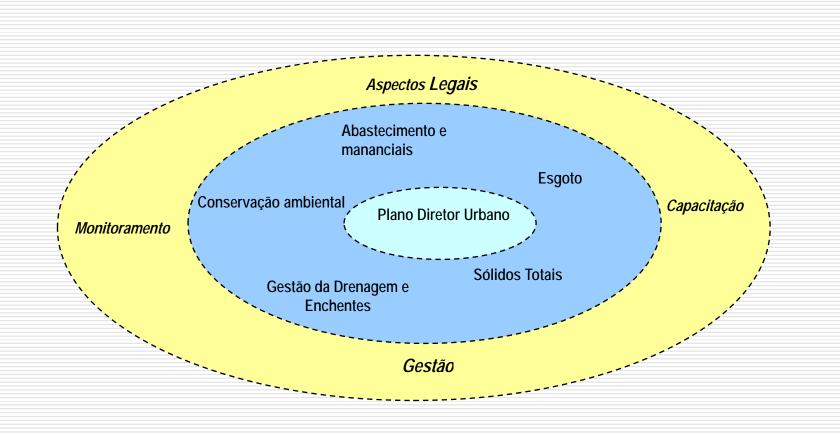
- □ Altas cargas sem tratamento nas cidades de cabeceiras = contaminação das fontes de água e impacto ambiental
- ☐ Colapso nas cidades com grande densidade habitacional
- redução da capacidade de recuperação dos ambientes pela maior flutuação e períodos críticos.


Gestão da bacia e da cidade

Espaço	Domínio	Gestores	Instrumento	Característica
Bacia Hidrográfica ¹	Estado ou Governo Federal	Comitê e Agências	Plano de bacia	Gestão da quantidade e qualidade da água no sistema de rios que formam a bacia hidrográfica, evitando a transferência de impactos
Município ²	Município ou Região Metropolitana	Município	Plano Diretor urbano e Plano integrado de Esgotamento, Drenagem Urbana e Resíduo Sólido	Minimizar os impactos de quantidade e qualidade dentro da cidade, nas pequenas bacias urbanas e não transferir impactos para o sistema de rios.

¹ – bacias de grande porte (> 1000 km²); 2 – área de abrangência do município e suas pequenas sub-bacias de macrodrenagem (< 50 km²). Os valores de áreas são indicativos e podem se alterar para cidades de grande porte

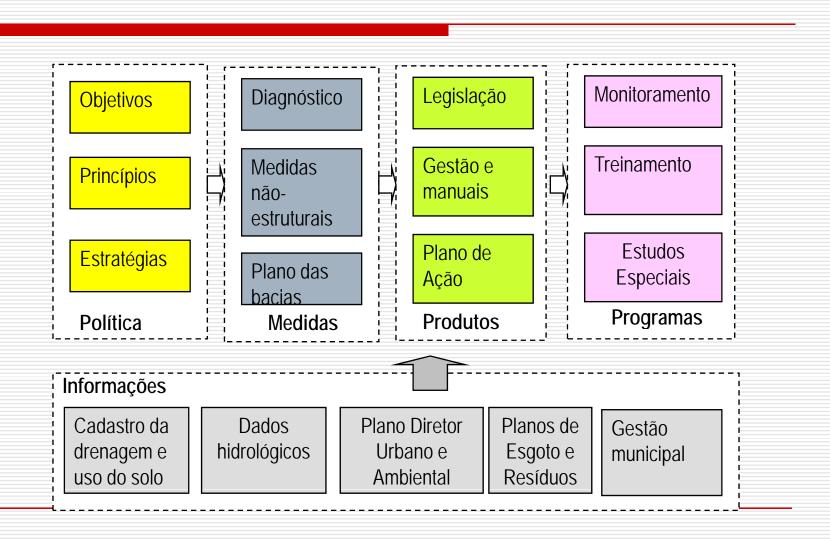
Escalas da Gestão das bacias hidrográficas


- ☐ Bacias de médio e grande porte e o espaço de desenvolvimento urbano;
- A gestão da bacia dos recursos hídricos intermunicipal é Estadual ou Federal
- ☐ As águas urbanas são condições de contorno internas
- ☐ A gestão das águas urbanas é municipal ou intermunicipal

Interface entre as Gestão da Bacia e da Cidade

- O comitê de bacia define as suas metas de enquadramento
- □ As cidades têm como meta atingir as condições de enquadramento dos trechos que contribuem por meio de medidas de gestão das águas urbanas da cidade = Plano de Saneamento ambiental da cidade

Gestão Integrada das Águas Urbanas



Interface entre os Planos

- ☐ A interface entre os diferentes componentes externos ao Plano de Águas Pluviais é essencial;
- ☐ O ideal é um Plano único com cada um dos componentes
- ☐ Para cidades maiores provavelmente são necessários planos independentes, mas com o componente de interface;
- □ Nas cidades menores poderá ser elaborado um único plano

Plano Diretor de Águas Pluviais

Estratégias e Cenários

- Medidas Não-estruturais : para o desenvolvimento futuro
- Medidas Estruturais: Plano de Obras por bacia hidrográfica
- Projeto para Cenários futuros de desenvolvimento urbano contido no Plano Diretor urbano

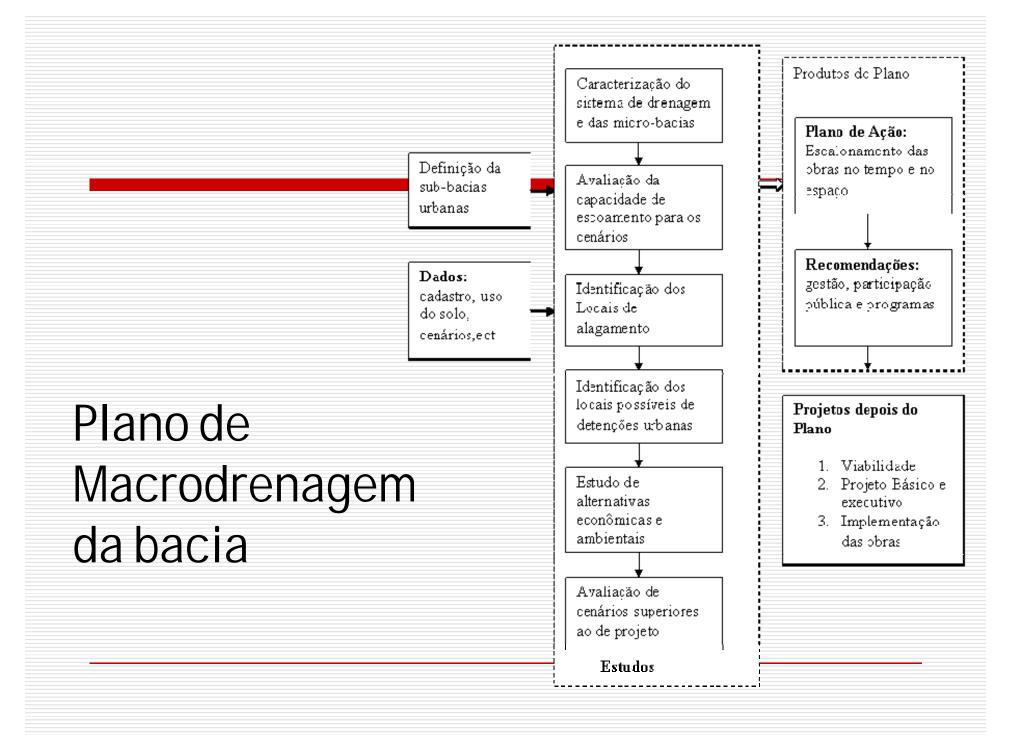
Metas

- ☐ Eliminar os locais de alagamento para um determinado risco e cenário de desenvolvimento urbano;
- □ Reduzir a poluição pluvial em 80% para o cenário de planejamento;
- ☐ Reduzir a valores internacionais aceitáveis a quantidade de resíduos sólidos na drenagem

Medidas não-estruturais

- legislação e regulamentação sobre o aumento da vazão devido a urbanização e a ocupação da área de risco de áreas ribeirinhas;
- gestão dos serviços urbanos relacionados com as águas pluviais.

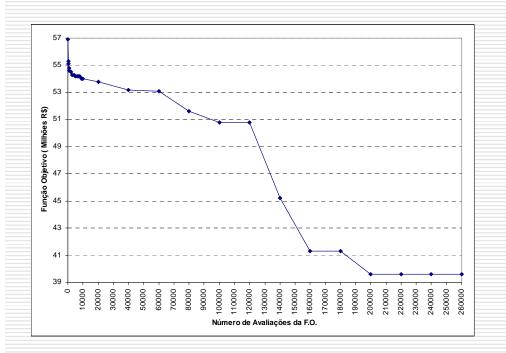
Padrões de Regulação: USA

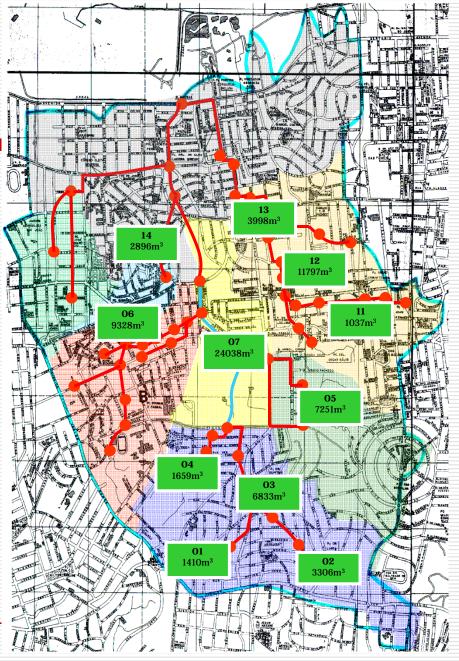

Impacto	Critérios de controle
Qualidade da água	Tratar 85% do volume de escoamento médio de um ano, traduzido por uma precipitação total diária
Erosão	Controle a chuva de 1 ano por 24 horas na detenção para evitar erosão
Inundação na macrodrenagem	Controle da chuva de projeto de T tempo de retorno (10, 25 ou outro)
Chuvas extremas ou inundação ribeirinha	Gestão para a área ribeirinha e controle para inundação de 100 anos

Controle do Pico

- Procura evitar que a vazão de novos empreendimentos sejam maiores ou iguais ao de pré-desenvolvimento.
- Necessário definir o risco de controle, a vazão de pré-desenvolvimento e relações que permitam estimar as medidas de controle.
- Critério utilizado em Porto Alegre para a vazão de pré-desenvolvimento se baseia no tempo de retorno de 10 anos.
- O controle é realizado pelo conduto de ligação com a rede pública

Resultados depois de 6 anos


- de 40 estruturas de armazenamento, localizadas em áreas públicas e privadas, em sua grande maioria bacias de detenção.
- A maior parte das estruturas são construídas em areia ou grama, e localizam-se em áreas privadas, principalmente loteamentos.
- Das 40 estruturas implantadas, 9 são operadas pelos próprios loteamentos e 31 são operadas pela prefeitura.
- De acordo com o projeto dos reservatórios, em média são necessários 100 m3/ha (10 l/m2) de armazenamento para controle do impacto causado pela urbanização. A maior parte das bacias possui até 10.000 m3 de volume.
- Economia da Prefeitura da ordem de R\$ 7 milhões anuais em custos evitados



Modelos

- □ Capacidade: Equação de Manning
- □ Locais de Alagamento : Modelo Chuva-Vazão
- Modelo de Otimização: otimização de função econômica com modelo chuva-vazão interno
- Modelo de Verificação: Hidrodinâmico com equação sob-pressão

Otimização

Cenários comparativo antes construir a cidade

- ☐ Custo de implantação de uma rede de drenagem com amortecimento 74 mil/ha
 - R\$ 7,4 milhões/km²
- □ Rede de drenagem tradicional com correção futura dos impactos com amortecimentio 195 mil/ha, 19,5 milhões/km²
- □ Rede tradcional com correção futura dos impactos com canalização ~ 360 mil/ha, 36 milhões/km²

Cenário depois de construído

- ☐ Correção com amortecimento: 2 a 6 milhões/km²
- □ Correção com canalização: 8 a 14 milhões km² e transferência de impacto

Cenários de Porto Alegre

Descrição	US \$ bilhões
Custo da rede pluviais existente	1,1
Custo da rede pluviais existente + o controle dos problemas existentes (sem considerar os prejuízos ocorridos)	1,4
Custo da rede com controle sustentável	0,50

Conclusão

- O efeito do uso do solo geralmente tem um efeito maior no ambiente urbano
- Devido a tendência da concentração da população nas cidades, os efeitos dos impactos sociais econômicos e ambientais podem ser exponenciais.
- ☐ A fragmentação somente existe na sociedade devido a formação das pessoas e a falta de componentes instituições fortes
- □ A gestão integrada é essencial para evitar a fragmentação e aumento do problemas urbanos.